Sturgeon County
Part of the North Saskatchewan River Basin
Parts of Tp 053 to 058, R 20 to 28, W4M & Tp 054 to 057, R 01, W5M
Regional Groundwater Assessment

Prepared for

In conjunction with

Agriculture and Agri-Food Canada
Prairie Farm Rehabilitation Administration

Agriculture et Agroalimentaire Canada
Administration du rétablissement agricole des Prairies

Prepared by
hydrogeological consultants ltd.
1-800-661-7972
Our File No.: 01-110

September 2001

PERMIT TO PRACTICE
HYDROGEOLOGICAL CONSULTANTS LTD.
Signature
Date

PERMIT NUMBER P 385
The Association of Professional Engineers, Geologists and Geophysicists of Alberta

© 2001 hydrogeological consultants ltd.
Table of Contents

1. Project Overview ... 1
 1.1 Purpose .. 1
 1.2 The Project .. 2
 1.3 About This Report .. 2
2. Introduction ... 3
 2.1 Setting ... 3
 2.2 Climate .. 3
 2.3 Background Information .. 4
 2.3.1 Number, Type and Depth of Water Wells .. 4
 2.3.2 Number of Water Wells in Surficial and Bedrock Aquifers ... 4
 2.3.3 Casing Diameter and Type .. 4
 2.3.4 Requirements for Licensing .. 5
 2.3.5 Groundwater Chemistry and Base of Groundwater Protection .. 6
3. Terms ... 8
4. Methodology .. 9
 4.1 Data Collection and Synthesis .. 9
 4.2 Spatial Distribution of Aquifers ... 11
 4.3 Hydrogeological Parameters ... 11
 4.3.1 Risk Criteria ... 12
 4.4 Maps and Cross-Sections ... 12
 4.5 Software ... 13
5. Aquifers .. 14
 5.1 Background ... 14
 5.1.1 Surficial Aquifers ... 14
 5.1.2 Bedrock Aquifers ... 15
 5.2 Aquifers in Surficial Deposits .. 16
 5.2.1 Geological Characteristics of Surficial Deposits .. 16
 5.2.2 Sand and Gravel Aquifer(s) .. 18
 5.2.3 Upper Sand and Gravel Aquifer ... 20
 5.2.4 Lower Sand and Gravel Aquifer .. 21
 5.3 Bedrock ... 22
 5.3.1 Geological Characteristics .. 22
 5.3.2 Aquifers .. 24
 5.3.3 Chemical Quality of Groundwater .. 25
 5.3.4 Middle Horseshoe Canyon Aquifer .. 26
List of Figures

Figure 1. Index Map .. 3
Figure 2. Location of Water Wells and Springs .. 4
Figure 3. Surface Casing Types Used in Drilled Water Wells ... 5
Figure 4. Depth to Base of Groundwater Protection (modified after EUB, 1995) 7
Figure 5. Generalized Cross-Section (for terminology only) ... 8
Figure 6. Geologic Column ... 8
Figure 7. Hydrogeological Map ... 10
Figure 8. Cross-Section A - A' ... 14
Figure 9. Cross-Section B - B' ... 15
Figure 10. Bedrock Topography .. 16
Figure 11. Thickness of Sand and Gravel Deposits ... 17
Figure 12. Water Wells Completed in Surficial Deposits ... 18
Figure 13. Apparent Yield for Water Wells Completed in Sand and Gravel Aquifer(s) 18
Figure 14. Total Dissolved Solids in Groundwater from Surficial Deposits 19
Figure 15. Apparent Yield for Water Wells Completed through Upper Sand and Gravel Aquifer .. 20
Figure 16. Apparent Yield for Water Wells Completed through Lower Sand and Gravel Aquifer .. 21
Figure 17. Bedrock Geology .. 22
Figure 18. E-Log showing Base of Foremost Formation .. 23
Figure 19. Apparent Yield for Water Wells Completed in Upper Bedrock Aquifer(s) 24
Figure 20. Total Dissolved Solids in Groundwater from Upper Bedrock Aquifer(s) 25
Figure 21. Apparent Yield for Water Wells Completed through Middle Horseshoe Canyon Aquifer .. 26
Figure 22. Apparent Yield for Water Wells Completed through Lower Horseshoe Canyon Aquifer .. 27
Figure 23. Apparent Yield for Water Wells Completed through Bearpaw Aquifer 28
Figure 24. Apparent Yield for Water Wells Completed through Oldman Aquifer 29
Figure 25. Apparent Yield for Water Wells Completed through the Birch Lake Aquifer 30
Figure 26. Estimated Water Well Use Per Section ... 32
Figure 27. Non-Pumping Water-Level Surface in Surficial Deposits Based on Water Wells Less than 20 Metres Deep 34
Figure 28. Recharge/Discharge Areas between Surficial Deposits and Upper Bedrock Aquifer(s) .. 35
Figure 29. Recharge/Discharge Areas between Surficial Deposits and Bearpaw Aquifer 35
Figure 30. Changes in Water Levels in Upper Bedrock Aquifer(s) ... 36
Figure 31. Risk of Groundwater Contamination ... 38
List of Tables

Table 1. Licensed Groundwater Diversions ..6
Table 2. Concentrations of Constituents in Groundwaters from Upper Bedrock Aquifer(s) ...6
Table 3. Risk of Groundwater Contamination Criteria...12
Table 4. Concentrations of Constituents in Groundwaters from Surficial Aquifers..19
Table 5. Completion Aquifer ..24
Table 6. Apparent Yields of Bedrock Aquifers ...24
Table 7. Unlicensed and Licensed Groundwater Diversions..31
Table 8. Total Groundwater Diversions ...32
Table 9. Groundwater Budget...33
Table 10. Changes in Water Levels in Sand and Gravel Aquifer(s)..36
Table 11. Risk of Groundwater Contamination Criteria...38

Appendices

A. Hydrogeological Maps and Figures
B. Maps and Figures on CD-ROM
C. General Water Well Information
D. Maps and Figures Included as Large Plots
E. Water Wells Recommended for Field Verification
1. Project Overview

“Water is the lifeblood of the earth.” - Anonymous

How a County takes care of one of its most precious resources - groundwater - reflects the future wealth and health of its people. Good environmental practices are not an accident. They must include genuine foresight with knowledgeable planning. Implementation of strong practices not only commits to a better quality of life for future generations, but also creates a solid base for increased economic activity. **Though this report’s scope is regional, it is a first step for Sturgeon County in managing their groundwater. It is also a guide for future groundwater-related projects.**

1.1 Purpose

This project is a regional groundwater assessment of Sturgeon County prepared by Hydrogeological Consultants Ltd. (HCL) with financial assistance from Prairie Farm Rehabilitation Administration (PFRA). The regional groundwater assessment provides the information to assist in the management of the groundwater resource within the County. Groundwater resource management involves determining the suitability of various areas in the County for particular activities. These activities can vary from the development of groundwater for agricultural or industrial purposes, to the siting of waste storage. **Proper management ensures protection and utilization of the groundwater resource for the maximum benefit of the people of the County.**

The regional groundwater assessment will:

- identify the aquifers\(^1\) within the surficial deposits\(^2\) and the upper bedrock
- spatially identify the main aquifers
- describe the quantity and quality of the groundwater associated with each aquifer
- identify the hydraulic relationship between aquifers
- identify possible groundwater depletion areas associated with each upper bedrock aquifer.

Under the present program, the groundwater-related data for the County have been assembled. Where practical, the data have been digitized. These data are then being used in the regional groundwater assessment for Sturgeon County.

\(^1\) See glossary
\(^2\) See glossary
1.2 The Project

This regional study should only be used as a guide. Detailed local studies are required to verify hydrogeological conditions at given locations.

The present project is made up of eight parts as follows:

- Task 1 - Data Collection and Review
- Task 2 - Hydrogeological Maps, Figures, Digital Data Files
- Task 3 – Hydrogeological Evaluation and Preparation of Report
- Task 4 - Groundwater Information Query Software
- Task 5 – Review of Draft Report and GIS Data Files
- Task 6 – Report Presentation and Familiarization Session
- Task 7 – Provision of Report, Maps, Data Layers and Query
- Task 8 – Provision of Compact Disk for Sale to General Public.

This report and the accompanying maps represent Tasks 2 and 3.

1.3 About This Report

This report provides an overview of (a) the groundwater resources of Sturgeon County, (b) the processes used for the present project, and (c) the groundwater characteristics in the County.

Additional technical details are available from files on the CD-ROM to be provided with the final version of this report. The files include the geo-referenced electronic groundwater database, maps showing distribution of various hydrogeological parameters, the groundwater query, ArcView files and ArcExplorer files. Likewise, all of the illustrations and maps from the present report, plus additional maps, figures and cross-sections, are available on the CD-ROM. For convenience, poster-size maps and cross-sections have been prepared as a visual summary of the results presented in this report. Copies of these poster-size drawings have been forwarded with this report, and are included as page-size drawings in Appendix D.

Appendix A features page-size copies of the figures within the report plus additional maps and cross-sections. An index of the page-size maps and figures is given at the beginning of Appendix A.

Appendix B provides a complete list of maps and figures included on the CD-ROM.

Appendix C includes the following:

1) a procedure for conducting aquifer tests with water wells
2) a table of contents for the Water (Ministerial) Regulation under the new Water Act
3) a flow chart showing the licensing of a groundwater diversion under the new Water Act
4) interpretation of chemical analysis of drinking water
5) additional information.

The Water (Ministerial) Regulation deals with the wellhead completion requirement (no more water-well pits), the proper procedure for abandoning unused water wells and the correct procedure for installing a pump in a water well. The new Water Act was proclaimed 10 Jan 1999.

Appendix D includes page-size copies of the poster-size figures provided with this report.

Appendix E provides a list of water wells recommended for field verification.

See glossary
2. Introduction

2.1 Setting

Sturgeon County is situated in central Alberta. This area is part of both the Low Boreal Mixedwood and the Aspen Parkland regions. The County is within the North Saskatchewan River basin; the County’s eastern boundary is the North Saskatchewan River. The other County boundaries follow township or section lines. The area includes parts of the area bounded by township 053, range 01, W5M in the southwest and township 058, range 20, W4M in the northeast.

Regionally, the topographic surface varies between 580 and 780 metres above mean sea level (AMSL). The lowest elevations occur in the northeastern part of the County along the North Saskatchewan River and Sturgeon River valleys and the highest are in the southwestern and northwestern parts of the County as shown on Figure 1 and page A-3.

2.2 Climate

Sturgeon County lies within the Dfb climate boundary. This classification is based on potential evapotranspiration values determined using the Thornthwaite method (Thornthwaite and Mather, 1957), combined with the distribution of natural ecoregions in the area. The ecoregions map (Strong and Legatt, 1981) shows that the County is located in both the Low Boreal Mixedwood region and the Aspen Parkland region. Increased precipitation and cooler temperatures, resulting in additional moisture availability, influence this vegetation change.

A Dfb climate consists of long, cool summers and severe winters. The mean monthly temperature drops below -3°C in the coolest month, and exceeds 10°C in the warmest month.

The mean annual precipitation averaged from five meteorological stations, two from within the County and three from outside the County borders, measured 471 millimetres (mm), based on data from 1961 to 1993. The mean annual temperature averaged 2.8°C, with the mean monthly temperature reaching a high of 16.5°C in July, and dropping to a low of −12.9°C in January. The calculated annual potential evapotranspiration is 504 millimetres.

Figure 1. Index Map
2.3 Background Information

2.3.1 Number, Type and Depth of Water Wells

There are currently records for 6,469 water wells in the groundwater database for the County. Of the 6,469 water wells, 5,798 are for domestic/stock purposes. The remaining 671 water wells were completed for a variety of uses, including industrial, municipal, observation, injection, irrigation, investigation and dewatering. Based on a rural population of 15,945 (Phinney, 2001), there are 1.4 domestic/stock water wells per family of four. It is unknown how many of these water wells may still be active. The domestic or stock water wells vary in depth from 1.2 to 198 metres below ground level. Details for lithology are available for 3,335 water wells.

2.3.2 Number of Water Wells in Surficial and Bedrock Aquifers

There are 2,426 water well records with completion interval and lithologic information, such that the aquifer in which the water wells are completed can be identified. The water wells that were not drilled deep enough to encounter the bedrock plus water wells that have the bottom of their completion interval above the top of the bedrock are water wells completed in surficial aquifers. Of the 2,426 water wells for which aquifers could be defined, 549 are completed in surficial aquifers, with 75% having a completion depth of more than 20 metres below ground level. The adjacent map shows that the water wells completed in the surficial deposits occur throughout the County, but mainly in the vicinity of linear bedrock lows.

The 1,877 water wells that have the top of their completion interval deeper than the top of the bedrock are referred to as bedrock water wells. From Figure 2, it can be seen that water wells completed in bedrock aquifers occur throughout the County.

There are currently records for 12 springs in the groundwater database for which there are only two available chemical analyses. The chemical values for springs indicate the groundwaters have total hardness concentrations of less than 200 milligrams per litre (mg/L) and total dissolved solids (TDS) concentrations ranging from 934 to 3,650 mg/L.

2.3.3 Casing Diameter and Type

Data for casing diameters are available for 2,936 water wells, with 2,449 (83%) indicated as having a diameter of less than 275 mm and 487 water wells having a surface-casing diameter of more than 275 mm. The casing diameters of greater than 275 mm are mainly bored or dug water wells and those with a surface-casing diameter of less than 275 mm are drilled water wells. The locations of the 487 water wells with large-diameter casings are shown on Figure 2 as bored water wells. Bored water wells are generally completed in surficial deposits. Figure 2 shows that bored water wells occur throughout the County but mainly in groupings in the northern half of the County.

5 See glossary
Until the mid-1950s, the percentage of bored water wells nearly equaled the number of drilled water wells completed in the County. From 1960 to 1990, the percentage of bored water wells decreased to an average of 19%, and since the mid-1990s has decreased to only 2%.

In the County, steel, galvanized steel and plastic surface casing materials have been used in 99% of the drilled water wells over the last 40 years. Until the mid-1960s, the type of surface casing used in drilled water wells was mainly undocumented. Steel casing was in use in the 1950s and is still used in two percent of the water wells being drilled in the County in the late-1990s.

Galvanized steel surface casing was used in a maximum of 19% of the drilled water wells from the early 1960s to the early 1990s. Galvanized steel was last used in December 1992. Plastic casing was first used in December 1971. The percentage of water wells with plastic casing has increased and in the late-1990s, plastic casing was used in 97% of the drilled water wells in the County.

2.3.4 Requirements for Licensing

Water wells used for household needs in excess of 1,250 cubic metres per year and all other groundwater use must be licensed. The only groundwater uses that do not need licensing are (1) household use of up to 1,250 m³/year and (2) groundwater with total dissolved solids in excess of 4,000 mg/L. At the end of 1999, 107 groundwater allocations were licensed in the County. Of the 107 licensed groundwater users, 71 could be linked to the Alberta Environment (AENV) groundwater database. Of the 107 licensed groundwater users, 66 are for agricultural purposes, and the remaining 41 are for commercial, municipal, recreation, fishery, irrigation or dewatering purposes. The total maximum authorized diversion from the water wells associated with these licences is 13,899 cubic metres per day (m³/day), although actual use could be less. Of the 13,899 m³/day, 10,578 m³/day (76%) is authorized for dewatering purposes from 12 dewatering wells as shown in Table 1 on the following page. Of the remaining 3,322 m³/day, 46% is allotted for commercial use, 28% is allotted for municipal use, 21% is allotted for agricultural use, and the remaining 5% is allotted for recreation, fishery and irrigation use. A figure showing the locations of the licensed users is in Appendix A (page A-5) and on the CD-ROM.

The largest single potable groundwater allocation within the County is for the Cardiff Golf and Country Club, having a diversion of 520 m³/day. This water supply well, used for commercial purposes, is completed in the Upper Sand and Gravel Aquifer.
The table below shows a breakdown of the 107 licensed groundwater allocations by the aquifer in which the water well is completed. The largest total licensed allocations are in the Lower Sand and Gravel Aquifer; the largest total licensed allocations not used for dewatering purposes are in the Upper Sand and Gravel Aquifer.

<table>
<thead>
<tr>
<th>Aquifer **</th>
<th>Diversions</th>
<th>Agricultural</th>
<th>Commercial</th>
<th>Municipal</th>
<th>Recreation</th>
<th>Fishery</th>
<th>Irrigation</th>
<th>Dewatering</th>
<th>Total</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Sand and Gravel</td>
<td>19</td>
<td>12</td>
<td>1,021</td>
<td>561</td>
<td>95</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,688</td>
<td>12</td>
</tr>
<tr>
<td>Lower Sand and Gravel</td>
<td>23</td>
<td>32</td>
<td>520</td>
<td>247</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>10,578</td>
<td>11,385</td>
<td>82</td>
</tr>
<tr>
<td>Lower Horseshoe Canyon</td>
<td>42</td>
<td>411</td>
<td>0</td>
<td>81</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>512</td>
<td>4</td>
</tr>
<tr>
<td>Bearpaw</td>
<td>10</td>
<td>88</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>108</td>
<td>1</td>
</tr>
<tr>
<td>Oldman</td>
<td>12</td>
<td>165</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>165</td>
<td>1</td>
</tr>
<tr>
<td>Unknown</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>41</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>107</td>
<td>708</td>
<td>1,541</td>
<td>929</td>
<td>95</td>
<td>29</td>
<td>20</td>
<td>10,578</td>
<td>13,899</td>
<td>100</td>
</tr>
<tr>
<td>Percentage</td>
<td>5</td>
<td>11</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>76</td>
<td>76</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

* - data from AENV ** - identification of Aquifer by HCL

Table 1. Licensed Groundwater Diverisions

Based on the 1996 Agriculture Census, the calculated water requirement for livestock for the County is in the order of 7,085 m3/day. Of the 7,085 m3/day average calculated livestock use, AENV has licensed a groundwater diversion of 708 m3/day (10%) and a surface-water diversion of 463 m3/day (6%). The remaining 84% of the calculated livestock use would have to be from unlicensed sources.

2.3.5 Groundwater Chemistry and Base of Groundwater Protection

Groundwaters from the surficial deposits can be expected to be chemically hard, with a high dissolved iron content. High nitrate + nitrite (as N) concentrations were evident in 13% of the available chemical data for the surficial aquifers and 2% of the available chemical data for the upper bedrock aquifer(s); a plot of nitrate + nitrite (as N) in surficial aquifers is on the accompanying CD-ROM. The TDS concentrations in the groundwaters from the upper bedrock in the County range from less than 500 to more than 2,000 mg/L (page A-29). Groundwaters from the bedrock aquifers frequently are chemically soft, with generally low concentrations of dissolved iron. The chemically soft groundwater is high in concentrations of sodium. Ten percent of the chemical analyses indicate a fluoride concentration above 1.5 mg/L, with most of the exceedances occurring in the northeastern part of the County (see CD-ROM).

The minimum, maximum and average concentrations of TDS, sodium, sulfate, chloride and fluoride in the groundwaters from water wells completed in the upper bedrock in the County have been compared to the Guidelines for Canadian Drinking Water Quality (GCDWQ) in Table 2. Of the five constituents compared to the GCDWQ, average values of TDS and sodium concentrations exceed the guidelines; maximum values of all five constituents exceed the guidelines. Of the 2,271 TDS values from water wells completed in the upper bedrock, 32 have TDS concentrations exceeding 4,000 mg/L.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Range for County in mg/L</th>
<th>Recommended Maximum Concentration GCDWQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Dissolved Solids</td>
<td>35-13,965</td>
<td>1424</td>
</tr>
<tr>
<td>Sodium</td>
<td>0-3,676</td>
<td>365</td>
</tr>
<tr>
<td>Sulfate</td>
<td>0-9,500</td>
<td>318</td>
</tr>
<tr>
<td>Chloride</td>
<td>0-4,400</td>
<td>186</td>
</tr>
<tr>
<td>Fluoride</td>
<td>0-13</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Note: indicated concentrations are for Aesthetic Objectives except for Fluoride, which is for Maximum Acceptable Concentration (MAC)

Table 2. Concentrations of Constituents in Groundwaters from Upper Bedrock Aquifer(s)
Alberta Environment defines the Base of Groundwater Protection as the elevation below which the groundwater will have more than 4,000 mg/L of total dissolved solids. By using the ground elevation, formation elevations, and Alberta Energy and Utilities Board (EUB) information indicating the formations containing the deepest useable water for agricultural needs, a value for the depth to the Base of Groundwater Protection can be determined. These values are gridded using the Kriging method to prepare a depth to the Base of Groundwater Protection surface. This depth, for the most part, would be the maximum drilling depth for a water well for agricultural purposes or for a potable water supply. If a water well has total dissolved solids exceeding 4,000 mg/L, the groundwater use does not require licensing by AENV. In the County, the depth to Base of Groundwater Protection ranges from less than 150 metres to more than 270 metres below ground level, as shown on Figure 4 and on each cross-section.

Of the 6,805 water wells with completed depth data, sixteen are completed below the Base of Groundwater Protection. These sixteen water wells are completed deeper than 1,100 metres below ground level and are used for industrial purposes.

Proper management of the groundwater resource requires water-level data. These data are often collected from observation water wells. At the present time, there are no AENV-operated observation water wells within the County. Additional data can be obtained from some of the licensed groundwater diversions. In the past, the data for licensed diversions have been difficult to obtain from AENV, in part because of the failure of the licensee to provide the data.

However, even with the available sources of data, the number of water-level data points relative to the size of the County is too few to provide a reliable groundwater budget (see section 6.0 of this report). The most cost-efficient method to collect additional groundwater monitoring data would be to have the water well owners measuring the water level in their own water well on a regular basis.

6 See glossary
3. Terms

![Figure 5. Generalized Cross-Section (for terminology only)](image)

![Figure 6. Geologic Column](image)
4. Methodology

4.1 Data Collection and Synthesis

The AENV groundwater database is the main source of groundwater data. The database includes the following:

1) water well drilling reports
2) aquifer test results from some water wells
3) location of some springs
4) water well locations determined during water well surveys
6) chemical analyses for some groundwaters
7) location of some flowing shot holes
8) location of structure test holes
9) a variety of data related to the groundwater resource.

The main disadvantage to the database is the absence of quality control. Very little can be done to overcome this lack of quality control in the data collection, other than to assess the usefulness of control points relative to other data during the interpretation. Another disadvantage to the database is the lack of adequate spatial information. Any duplicate water wells that have been identified within the County have been removed from the database used in this regional groundwater assessment.

The AENV groundwater database uses a land-based system with only a limited number of records having a value for ground elevation. The locations for records usually include a quarter section description; a few records also have a land description that includes a Legal Subdivision (Lsd). For digital processing, a record location requires a horizontal coordinate system. In the absence of an actual location for a record, the record is given the coordinates for the centre of the land description.

The present project uses the 10TM coordinate system. This means that a record for the NW ¼ of section 32, township 054, range 27, W4M, would have a horizontal coordinate with an Easting of 69,141 metres and a Northing of 5,949,398 metres, the centre of the quarter section. If the water well has been repositioned by PFRA using orthorectified aerial photos, the location will be more accurate, possibly within several tens of metres of the actual location. Once the horizontal coordinates are determined for a record, a ground elevation for that record is obtained from the 1:20,000 Digital Elevation Model (DEM); AltaLis Ltd. provides the DEM.

At many locations within the County, more than one water well is completed at one legal location. Digitally processing this information is difficult. To obtain a better understanding of the completed depths of water wells, a digital surface was prepared representing the minimum depth for water wells and a second digital surface was prepared for the maximum depth. Both of these surfaces are used in the groundwater query on the CD-ROM. When the maximum and minimum water well depths are similar, there is only one aquifer that is being used at a given location.

After assigning spatial control for the ground location for the records in the groundwater database, the data are processed to determine values for hydrogeological parameters. As part of the processing, obvious keying errors in the database are corrected.
Where possible, determinations are made from individual records for the following:

1) depth to bedrock
2) total thickness of sand and gravel
3) total thickness of saturated sand and gravel
4) depth to the top and bottom of completion intervals.

Also, where sufficient information is available, values for apparent transmissivity\(^7\) and apparent yield\(^8\) are calculated, based on the aquifer test summary data supplied on the water well drilling reports. Where valid detailed aquifer test results exist, the interpreted data provide values for aquifer transmissivity and effective transmissivity. Since the last regional hydrogeological map covering the majority of the County was published in 1974 (Bibby, 1974), 1,610 values for apparent transmissivity and 1,423 values for apparent yield have been added to the groundwater database. With the addition of the apparent yield values, a hydrogeological map has been prepared to help illustrate the general groundwater availability across the County. The anticipated groundwater apparent yield is based on the expected yield of a single water well obtaining water from the total accessible stratigraphic section.

The EUB well database includes records for all of the wells drilled by the oil and gas industry. The information from this source includes:

1) spatial control for each well site
2) depth to the top of various geologic units
3) type and intervals for various down-hole geophysical logs
4) drill stem test (DST) summaries.

Values for apparent transmissivity, apparent yield and hydraulic conductivity are calculated from the DST summaries.

Published and unpublished reports and maps provide the final source of information to be included in the new groundwater database. The reference section of this report lists the available reports. The only digital data from publications are from the Geological Atlas of the Western Canada Sedimentary Basin (Mossop and Shetsen, 1994). These data are used to support the geological interpretation of geophysical logs but cannot be distributed because of a licensing agreement.

\(^7\) For definitions of Transmissivity, see glossary
\(^8\) For definitions of Yield, see glossary
4.2 Spatial Distribution of Aquifers

Determination of the spatial distribution of the aquifers is based on:

1) lithologs provided by the water well drillers
2) geophysical logs from structure test holes
3) geophysical logs for wells drilled by the oil and gas industry
4) data from existing cross-sections.

The aquifers are defined by mapping the tops and bottoms of individual geologic units. The values for the elevation of the top and bottom of individual geologic units at specific locations help to determine the spatial distribution of the individual surfaces. Establishment of a surface distribution digitally requires preparation of a grid. The inconsistent quality of the data necessitates creating a representative sample set obtained from the entire data set. If the data set is large enough, it can be treated as a normal population and the removal of extreme values can be done statistically. When data sets are small, the process of data reduction involves a more direct assessment of the quality of individual points. Because of the uneven distribution of the data, all data sets are gridded using the Kriging method.

The final definition of the individual surfaces becomes an iterative process involving the plotting of the surfaces on cross-sections and the adjusting of control points to fit with the surrounding data.

4.3 Hydrogeological Parameters

Water well records that indicate the depths to the top and bottom of their completion interval are compared digitally to the spatial distribution of the various geological surfaces. This procedure allows for the determination of the aquifer in which individual water wells are completed. When the completion interval of a water well cannot be established unequivocally, the data from that water well are not used in determining the distribution of hydraulic parameters.

After the water wells are assigned to a specific aquifer, the parameters from the water well records are assigned to the individual aquifers. The parameters include non-pumping (static) water level (NPWL), apparent transmissivity, and apparent water well yield if neither aquifer nor effective transmissivity values are available. The total dissolved solids, sulfate and chloride concentrations from the chemical analysis of the groundwater are also assigned to applicable aquifers. In addition, chemical parameters of nitrate + nitrite (as N) are assigned to surficial aquifers and fluoride is assigned to upper bedrock aquifer(s). Since 1986, Alberta Health and Wellness has restricted access to chemical analysis data, and hence the database includes only limited amounts of chemical data since 1986.

Once the values for the various parameters of the individual aquifers are established, the spatial distribution of these parameters must be determined. The distribution of individual parameters involves the same process as the distribution of geological surfaces. This means establishing a representative data set and then preparing a grid. Even when only limited data are available, grids are prepared. However, the grids prepared from the limited data must be used with extreme caution because the gridding process can be unreliable.
4.3.1 Risk Criteria

The main source of groundwater contamination involves activities on or near the land surface. The risk of groundwater contamination is high when the near-surface materials are porous and permeable, and low when the materials are less porous and less permeable. The sources of data for the risk analysis include (a) a determination of when sand and gravel is or is not present within one metre of the ground surface, and (b) the surficial geology and/or the soil map. The presence or absence of sand and gravel within one metre of the land surface is based on a geological surface prepared from the data supplied on the water well drilling reports. The information available on the surficial geology and/or the soil map is categorized based on relative permeability. The information from these sources is combined to form the risk assessment map. The criteria used in the classification of risk are given in the above table.

Table 3. Risk of Groundwater Contamination Criteria

<table>
<thead>
<tr>
<th>Surface Permeability</th>
<th>Sand or Gravel Present - Top Within One Metre Of Ground Surface</th>
<th>Groundwater Contamination Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>No</td>
<td>Low</td>
</tr>
<tr>
<td>Moderate</td>
<td>No</td>
<td>Moderate</td>
</tr>
<tr>
<td>High</td>
<td>No</td>
<td>High</td>
</tr>
<tr>
<td>Low</td>
<td>Yes</td>
<td>High</td>
</tr>
<tr>
<td>Moderate</td>
<td>Yes</td>
<td>High</td>
</tr>
<tr>
<td>High</td>
<td>Yes</td>
<td>Very High</td>
</tr>
</tbody>
</table>

4.4 Maps and Cross-Sections

Once grids for geological surfaces have been prepared, various grids need to be combined to establish the extent and thickness of individual geologic units. For example, the relationship between an upper bedrock unit and the bedrock surface must be determined. This process provides both the outline and the thickness of the geologic unit.

Once the appropriate grids are available, the maps are prepared by contouring the grids. The areal extent of individual parameters is outlined by “masks” to delineate individual aquifers. For the upper bedrock aquifer(s), where areas of no data are available from the groundwater database, prepared maps have been masked with a solid brown color to indicate these areas. These brown masks have been added to the Bearpaw, Oldman and Birch Lake aquifers. Appendix A includes page-size maps from the text, plus additional page-size maps and figures that support the discussion in the text. A list of maps and figures that are included on the CD-ROM is given in Appendix B.

Cross-sections are prepared by first choosing control points from the database along preferred lines of section. Data from these control points are then obtained from the database and placed in an AutoCAD drawing with an appropriate vertical exaggeration. The data placed in the AutoCAD drawing include the geo-referenced lithology, completion intervals and non-pumping water levels. Data from individual geologic units are then transferred to the cross-section from the digitally prepared surfaces.

Once the technical details of a cross-section are correct, the drawing file is moved to the software package CorelDraw! for simplification and presentation in a hard-copy form. Four cross-sections are presented in this report and as poster-size drawings forwarded with this report. The cross-sections are also included in Appendix A, and are included on the CD-ROM; page-size maps of the poster-size cross-sections are included in Appendix D of this report.
4.5 Software

The files on the CD-ROM have been generated from the following software:

- Acrobat 4.0
- ArcView 3.2
- AutoCAD 2000
- CorelDraw! 10.0
- Microsoft Professional Office 2000
- Surfer 7.0
5. Aquifers

5.1 Background

An aquifer is a permeable rock that is saturated. If the non-pumping water level is above the top of the rock unit, this type of aquifer is an artesian aquifer. If the rock unit is not entirely saturated and the water level is below the top of the unit, this type of aquifer is a water-table aquifer. These types of aquifers occur in one of two general geological settings in the County. The first geological setting includes the sediments that overlie the bedrock surface. In this report, these sediments are referred to as the surficial deposits. The second geological setting includes aquifers in the upper bedrock. The geological settings, the nature of the deposits making up the aquifers within each setting, the expected yield of water wells completed in aquifer(s) within different geologic units, and the general chemical quality of the groundwater associated with each setting are reviewed separately.

5.1.1 Surficial Aquifers

Surficial deposits in the County are mainly less than 30 metres thick, except in areas of linear bedrock lows where the thickness of the surficial deposits can exceed 50 metres. The Buried Beverly Valley, the Buried Sturgeon Valley and the Buried Onoway Valley are the main linear bedrock lows in the County. The west-east cross-section A-A', Figure 8 shown below, passes across all three of the main buried valleys and shows the surficial deposits being mainly less than 50 metres thick within the buried valleys.

![Figure 8. Cross-Section A - A'](source: http://example.com/figure8.png)

The main aquifers in the surficial materials are sand and gravel deposits. In order for a sand and gravel deposit to be an aquifer, it must be saturated; if not saturated, a sand and gravel deposit is not an aquifer. The top of the surficial aquifers has been determined from the non-pumping water level in water wells that are less than 20 metres deep. The base of the surficial deposits is the bedrock surface.

For a water well with a small-diameter casing to be effective in surficial deposits and to provide sand-free groundwater, the water well must be completed with a water well screen. Some water wells completed in the surficial deposits are completed in low-permeability aquifers and have a large-diameter casing. The large-
diameter water wells may have been hand dug or bored and because they are completed in very low permeability aquifers, most of these water wells would not benefit from water well screens. The groundwater from an aquifer in the surficial deposits usually has a chemical hardness of at least a few hundred mg/L and a dissolved iron concentration such that the groundwater must be treated before being used for domestic needs. Within the County, casing-diameter information is available for 485 of the 549 water wells completed in the surficial deposits; 15 percent of these have a casing diameter of more than 275 millimetres, and are assumed to be bored or dug water wells.

5.1.2 Bedrock Aquifers

In the County, the upper bedrock includes the Horseshoe Canyon, Bearpaw and Oldman formations, and the Birch Lake Member equivalent of the Foremost Formation. Cross-section B-B' (Figure 9) shows the aquifers in which water wells are completed are within 200 metres of the ground surface. Some of this bedrock contains saturated rocks that are permeable enough to transmit groundwater for a specific need. Water wells completed in bedrock aquifers usually do not require water well screens, although some of the sandstones may be friable and water well screens are a necessity. The groundwater from the bedrock aquifers is usually chemically soft.

The data for 1,877 water wells show that the top of the water well completion interval is below the bedrock surface, indicating that the water wells are completed in at least one bedrock aquifer. Within the County, casing-diameter information is available for 1,575 of the 1,877 water wells completed below the top of bedrock. Of these 1,575 water wells, 99% have surface-casing diameters of less than 275 mm and these bedrock water wells have been mainly completed with either a perforated liner or as open hole; there are 109 bedrock water wells completed with a water well screen.

9 See glossary
5.2 Aquifers in Surficial Deposits

The surficial deposits are the sediments above the bedrock surface. These include pre-glacial materials, which were deposited before glaciation, and materials deposited directly or indirectly as a result of glaciation. The lower surficial deposits include pre-glacial fluvioglacial and lacustrine deposits. The lacustrine deposits include clay, silt and fine-grained sand. The upper surficial deposits include the more traditional glacial deposits of till and meltwater deposits. In the County, pre-glacial materials are expected to be mainly present in association with the Buried Beverly Valley, the Buried Sturgeon Valley and the Buried Onoway Valley.

5.2.1 Geological Characteristics of Surficial Deposits

While the surficial deposits are treated as one hydrogeologic unit, they consist of three hydraulic parts. The first unit is the sand and gravel deposits of the lower surficial deposits, when present. These deposits are mainly saturated. The second and third hydraulic units are associated with the sand and gravel deposits in the upper surficial deposits. The sand and gravel deposits in the upper surficial deposits occur mainly as pockets. The second hydraulic unit is the saturated part of these sand and gravel deposits; the third hydraulic unit is the unsaturated part of these deposits. For a graphical depiction of the above description, please refer to Figure 5, Page 8. While the unsaturated deposits are not technically an aquifer, they are significant as they provide a pathway for liquid contaminants to move downward into the groundwater.

The base of the surficial deposits is the bedrock surface, represented by the bedrock topography as shown on the adjacent map.

Over the majority of the County, the surficial deposits are less than 30 metres thick (page A-16). The exceptions are mainly in association with areas where buried bedrock valleys are present, where the deposits can have a maximum thickness of close to 50 metres. The main linear bedrock lows in the County are southwest-northeast-trending or west-east-trending bedrock lows that have been designated as the Buried Beverly, Sturgeon and Onoway valleys, as shown on Figure 10.

The Buried Beverly Valley is present in the eastern and extreme southern parts of the County, and mainly parallels the present-day North Saskatchewan River. The Valley is two to eight kilometres wide within the County, with local bedrock relief being up to 60 metres. Sand and gravel deposits can be expected in association with this bedrock low, but the thickness of the sand and gravel deposits is expected to be mainly less than ten metres.

The Buried Sturgeon Valley is present in the south-central part of the County, and mainly parallels the stretch of present-day Sturgeon River between St. Albert and Gibbons. The Valley is mainly less than three kilometres wide within the County, with local bedrock relief being up to 60 metres. Sand and gravel deposits can be expected in association with this bedrock low, with the thickness of the sand and gravel deposits being mainly less than 25 metres.

The Buried Onoway Valley is present in the southwestern part of the County, and mainly parallels the stretch of present-day Sturgeon River northwest from St. Albert to Calahoo and the County border. The Valley is two to
eight kilometres wide within the County, with local bedrock relief being up to 60 metres. Sand and gravel deposits can be expected in association with this bedrock low, with the thickness of the sand and gravel deposits being mainly less than 25 metres.

The Buried Egremont Valley, present immediately north of the County, is a tributary valley to the Buried Beverly Valley. The Buried Egremont Valley, a southwest-northeast-trending linear bedrock low in Thorhild County, joins the Buried Beverly Valley in township 057, range 20, W4M. The thickness of the sand and gravel deposits associated with the Buried Egremont Valley can be expected to be mainly less than 25 metres.

The lower surficial deposits are composed mostly of fluvial and lacustrine deposits. Lower surficial deposits occur mainly in the Buried Beverly, Sturgeon and Onoway valleys. The total thickness of the lower surficial deposits is mainly less than 30 metres, but can be more than 30 metres in the buried bedrock valleys. The lowest part of the lower surficial deposits includes pre-glacial sand and gravel deposits. These deposits would generally be expected to directly overlie the bedrock surface in the buried bedrock valleys. The lowest sand and gravel deposits are of fluvial origin, are usually less than five metres thick and may be discontinuous.

In the County, there are a number of linear bedrock lows that trend mainly northwest to southeast and are indicated as being of meltwater origin. Because sediments associated with the lower surficial deposits are indicated as being present in many of these linear bedrock lows, it is possible that the bedrock lows were originally tributaries to the buried bedrock valleys as shown in the bedrock topography map on Figure 10.

The upper surficial deposits are either directly or indirectly a result of glacial activity. The deposits include till, with minor sand and gravel deposits of meltwater origin, which are expected to occur mainly as isolated pockets. The thickness of the upper surficial deposits is mainly less than 30 metres, but can be more than 30 metres in the meltwater channel associated with the Buried Sturgeon Valley and in the Buried Beverly Valley. Upper Surficial deposits are mainly absent from the Buried Onoway Valley (see CD-ROM).

Sand and gravel deposits can occur throughout the surficial deposits. The total thickness of sand and gravel deposits is generally less than ten metres but can be more than 25 metres in association with the buried bedrock valleys.

The combined thickness of all sand and gravel deposits has been determined as a function of the total thickness of the surficial deposits (Figure 11). Over approximately 50% of the County where sand and gravel deposits are present, the sand and gravel deposits are more than 30% of the total thickness of the surficial deposits (page A-18). The areas where sand and gravel deposits constitute more than 30% of the total thickness of the surficial deposits is mainly in the areas associated with the buried bedrock valleys and meltwater channels and in the northeastern part of the County.
5.2.2 Sand and Gravel Aquifer(s)

One source of groundwater in the County includes aquifers in the surficial deposits. Since the sand and gravel aquifer(s) are not everywhere, the actual aquifer that is developed at a given location is usually dictated by the aquifer that is present. In the County, the thickness of the sand and gravel aquifer(s) is generally less than five metres, but can be more than ten metres in the vicinity of the buried bedrock lows (page A-20).

From the present hydrogeological analysis, 1,516 water wells are completed in aquifers in the surficial deposits. Of the 1,516 water wells, 1,097 are completed in aquifers in the upper surficial deposits and 419 are completed in aquifers in the lower surficial deposits. This number of water wells is nearly two times the number (549) determined to be completed in aquifers in the surficial deposits, based on lithologies given on the water well drilling reports. The larger number is obtained by comparing the elevation of the reported depth of a water well to the elevation of the bedrock surface at the same location. For example, if only the depth of a water well is known, the elevation of the completed depth can be calculated. If the elevation of the completed depth is above the elevation of the bedrock surface determined from the gridded bedrock topographic surface at the same location, then the water well is considered to be completed in an aquifer in the surficial deposits.

Water wells completed in the upper surficial deposits occur throughout the County. In the area underlain by the Buried Sturgeon and Onoway valleys, there are a large number of water wells completed in the lower surficial deposits (Figure 12).

The map to the left shows expected yields for water wells completed in sand and gravel aquifer(s). Over approximately 30% of the County, the sand and gravel deposits are not present, or if present, are not saturated.

Based on the aquifers that have been developed by existing water wells, these data show that water wells with yields of more than 100 m³/day from sand and gravel aquifer(s) can be expected in several areas of the County. The most notable areas where yields of more than 100 m³/day are expected are in association with the Buried Sturgeon and Onoway valleys. In addition to the 219 records for surficial water wells with apparent yield data, there are 22 records that indicate dry or abandoned with “insufficient water”. In order to depict a more accurate yield map, an apparent yield of 0.1 m³/day was assigned to the 22 dry holes prior to gridding. Also included in these postings is any record that includes comments that state the water well goes dry in dry years.
5.2.2.1 Chemical Quality of Groundwater from Surficial Deposits

The chemical analysis results of groundwaters from the sand and gravel aquifers in the surficial deposits indicate the groundwaters are generally chemically hard and high in dissolved iron. In Sturgeon County, groundwaters from the surficial aquifers mainly have a chemical hardness of greater than 200 mg/L (see CD-ROM).

The Piper tri-linear diagrams\(^\text{13}\) (page A-27) show the groundwaters from the surficial deposits are mainly calcium-magnesium-bicarbonate or calcium-magnesium-sulfate type waters. The records with the sodium-bicarbonate waters were individually checked in the database to confirm the completion aquifer. Seventy percent of the groundwaters from the surficial deposits have a TDS concentration of more than 500 mg/L. The water wells completed in aquifers associated with the buried bedrock valleys can expect to have groundwaters with TDS concentrations of mainly less than 1,000 mg/L as shown on Figure 14, possibly as a result of active, local flow systems. Seventy-five percent of the groundwaters from the surficial deposits are reported to have dissolved iron concentrations of less than one mg/L. However, many iron analysis results are questionable due to varying sampling and analytical methodologies.

There are groundwaters with sulfate as the main anion. The groundwaters with elevated levels of sulfate generally occur in areas where there are elevated levels of total dissolved solids. There are very few groundwaters from the surficial deposits with appreciable concentrations of the chloride ion and in 93% of the samples analyzed in the County, the chloride ion concentration is less than 100 mg/L (see CD-ROM).

In the County, the nitrate + nitrite (as N) concentrations in the groundwaters from the surficial deposits exceed the maximum acceptable concentrations (MAC) of ten mg/L in 10% of the samples. Groundwaters with a nitrate + nitrite (as N) concentration exceeding the IMAC (10 mg/L) have been posted on the nitrate + nitrite (as N) map (see CD-ROM). The map shows the exceedances are mainly in the northeastern half of the County.

The minimum, maximum and average concentrations of TDS, sodium, sulfate, chloride and nitrate + nitrite (as N) in the groundwaters from water wells completed in the surficial deposits in the County have been compared to the GCDWQ in the adjacent table. Of the five constituents that have been compared to the GCDWQ, only the average values of TDS concentrations exceed the guidelines.

\(^\text{13}\) See glossary
5.2.3 Upper Sand and Gravel Aquifer

The Upper Sand and Gravel Aquifer includes saturated sand and gravel deposits in the upper surficial deposits. Typically, these aquifers are present within the surficial deposits at no particular depth. Saturated sand and gravel deposits in the upper surficial deposits are not usually continuous but are expected over approximately 50% of the County.

5.2.3.1 Aquifer Thickness

The thickness of the Upper Sand and Gravel Aquifer is a function of two parameters: (1) the elevation of the non-pumping water-level surface associated with the surficial deposits; and (2) the depth to the bedrock surface or depth to top of lower surficial deposits when present. In the County, the thickness of the Upper Sand and Gravel Aquifer is generally less than five metres, but can be more than ten metres in the vicinity of the linear bedrock lows and in the northeastern part of the County (see CD-ROM).

5.2.3.2 Apparent Yield

The permeability of the Upper Sand and Gravel Aquifer can be high. The high permeability combined with significant thickness leads to an extrapolation of high yields for water wells; however, because the sand and gravel deposits occur mainly as hydraulically discontinuous pockets, the apparent yields of the water wells are limited. The apparent yields for water wells completed through this Aquifer are expected to be mainly less than 100 m3/day, except adjacent to the meltwater channel near Bon Accord, as shown on Figure 15. The yields present in the western part of the County could be a result of the gridding procedure used to process a limited number of data points. In addition to the 83 records for Upper Sand and Gravel Aquifer water wells with apparent yield data, there are 18 records that indicate dry or abandoned surficial water wells with “insufficient water”. In order to depict a more accurate yield map, an apparent yield of 0.1 m3/day was assigned to the dry holes prior to gridding.

Where the Upper Sand and Gravel Aquifer is absent and where the yields are low, the development of water wells for the domestic needs of single families may not be possible from this Aquifer, and construction of a water supply well into the underlying bedrock may be the only alternative, provided yields and quality of groundwater from the bedrock aquifer(s) are suitable.

In the County, there are 19 licensed water wells that are completed through the Upper Sand and Gravel Aquifer, with a total authorized diversion of 1,688 m3/day. The highest allocation of 520 m3/day is for a water well for the Cardiff Golf and Country Club in SW 24-055-25 W4M used for commercial purposes. The second highest allocation of 415 m3/day is for a Town of Bon Accord water well in 01-13-056-24 W4M for municipal purposes.

Ten of the 19 licensed water wells completed through the Upper Sand and Gravel Aquifer could be linked to a water well in the AENV groundwater database.
5.2.4 Lower Sand and Gravel Aquifer

The Lower Sand and Gravel Aquifer is a saturated sand and gravel deposit that occurs at or near the base of the surficial deposits in the deeper part of the linear bedrock lows. The top of the lower surficial deposits is based on more than 1,000 control points across Alberta. In the County, there are thirteen control points provided by Allong (1967), Edwards (1984) and Fox (1984).

5.2.4.1 Aquifer Thickness

The thickness of the Lower Sand and Gravel Aquifer is mainly less than ten metres, but can be more than 15 metres in the buried bedrock valleys (see CD-ROM).

5.2.4.2 Apparent Yield

Apparent yields for water wells completed in the Lower Sand and Gravel Aquifer range from less than 10 m³/day to more than 100 m³/day. Yields of more than 100 m³/day are consistently expected in the Lower Sand and Gravel Aquifer associated with the Buried Sturgeon Valley. In addition to the 136 water well records for Lower Sand and Gravel Aquifer water wells with apparent yield data, there are four records that indicate dry, or abandoned with “insufficient water”. In order to depict a more accurate yield map, an apparent yield of 0.1 m³/day was assigned to the four dry holes prior to gridding.

In the County, there are 23 licensed water wells that are completed through the Lower Sand and Gravel Aquifer, for a total authorized diversion of 11,385 m³/day, of which 93% is used for dewatering purposes by the gravel industry.

Only six of the 23 licensed water wells completed through the Lower Sand and Gravel Aquifer could be linked to a water well in the AENV groundwater database.

A water test hole/observation water well and a production water well were completed within the Lower Sand and Gravel Aquifer associated with the Buried Sturgeon Valley in 09-08-056-23 W4M near Gibbons as part of a detailed study conducted for Alberta Environment (Geoscience Consulting Ltd., March 26, 1975). As a result, it was determined that the “aquifer appeared to be capable of yielding several hundred gallons per minute to a single well.” These high yields of 2,290 m³/day (350 igpm) were based on a transmissivity value of 300 m²/day and corresponding storativity of 6.5 x 10⁻⁴. The aquifer parameters are based on an aquifer test consisting of 48 hours of pumping 336 litres per minute (74 igpm) and 48 hours of recovery.

The groundwater from the production water well in 09-08-056-23 W4M had a TDS concentration of 724 mg/L, a sulfate concentration of 149 mg/L, a chloride concentration of 5 mg/L, and a total hardness of 462 mg/L.
5.3 Bedrock

5.3.1 Geological Characteristics

The upper bedrock in the County includes part of the Edmonton Group, the Bearpaw Formation and the Belly River Group. The Edmonton Group in the County includes only the Horseshoe Canyon Formation. The Belly River Group subcrop in the County includes the Oldman Formation and the Birch Lake Member of the Foremost Formation. The adjacent bedrock geology map, showing the subcrop of different geological units, has been prepared in part from the interpretation of geophysical logs related to oil and gas activity. A generalized geologic column is illustrated in Figure 6, in Appendix A and on the CD-ROM.

The Horseshoe Canyon Formation is the lower part of the Edmonton Group. The Horseshoe Canyon Formation has a maximum thickness of 350 metres and has three separate units: Upper, Middle and Lower. The Upper Horseshoe Canyon, which can be up to 100 metres thick, is the upper bedrock in the extreme southwestern part of the County. The Middle Horseshoe Canyon, which is up to 70 metres thick, is the upper bedrock also in the extreme southwestern part of the County. The Lower Horseshoe Canyon, which can be up to 170 metres thick, is less than 140 metres thick within the County and is the upper bedrock in the western half of the County.

The Horseshoe Canyon Formation consists of deltaic and fluvial sandstone, siltstone and shale with interbedded coal seams, bentonite and thin nodular beds of limestone and ironstone. Because of the low-energy environment in which deposition occurred, the sandstone, when present, tends to be finer grained. The lower 60 to 70 metres and the upper 30 to 50 metres of the Horseshoe Canyon Formation can include coarser grained sandstone deposits. In the County, the main aquifers in the Horseshoe Canyon Formation are fractured coal seams. If the coal layers are not fractured, the main aquifers are clayey and/or bentonitic sandstones.

The Bearpaw Formation underlies the Horseshoe Canyon Formation, is in the order of 80 to 100 metres thick and is the upper bedrock in the north-central part of the County. The Bearpaw Formation includes transgressive, shallow marine (shoreface) and open marine facies deposits. In Sturgeon County, the Bearpaw Formation is composed mainly of shale and coal.

The Belly River Group includes the Oldman Formation and the Birch Lake, Ribstone Creek, Victoria and Brosseau members of the Foremost Formation. The Foremost Formation includes the continental facies within the County. The Belly River Group in the County has a maximum thickness of 200 metres. In the County, only the Oldman Formation and the Birch Lake Member are present as the upper bedrock.

The Oldman Formation is present as the upper bedrock in most of the northern part of the County and is mainly less than 130 metres thick. The Oldman Formation is composed of continental deposits, sandstone, siltstone, shale and coal. The Oldman Formation is the upper part of the Belly River Group.
The *continental* Foremost Formation has been eroded in most of the County and subcrops in the extreme northern part of the County. The *continental* Foremost Formation is less than 160 metres thick and is between the overlying Oldman Formation and the underlying Lea Park Formation. In the *continental* Foremost Formation, individual members have been identified. The members include both sandstone and shale units. Coal zones occur within the *continental* Foremost Formation, with the main ones referred to as the McKay and the Taber Coal zones. There are also minor amounts of ironstone, a chemical deposit. For the present project, the individual members are identified by the designation given to the sandstone members associated with the marine facies, with the underlying shale member being considered as the shale facies of the member. For example, in this report the Birch Lake Member includes the Birch Lake Member (a sandstone deposit, or its equivalent) and the underlying shale deposit. The Taber Coal Zone is associated with the Birch Lake Member. Eastward, the sandstone layers of individual members grade into marine deposits.

The present breakdown of the Foremost Formation would not be possible without identifying a continuous top for the Lea Park Formation. The top of the Lea Park Formation represents a geologic time border between the marine environment of the Lea Park Formation and the mostly continental environment of the Foremost Formation.

The top of the Lea Park Formation is the bottom of the higher resistivity layer that occurs within a few metres below a regionally identifiable bentonite marker, as shown in the adjacent e-log. This marker occurs approximately 100 metres above the Milk River Shoulder.

There will be no direct review of either the Upper Horseshoe Canyon Formation or the Ribstone Creek Member in the text of this report. Because of the limited amount of hydrogeological information in the County, a complete detailed map set has not been prepared; the only maps associated with the Upper Horseshoe Canyon Formation or the Ribstone Creek Member to be included on the CD-ROM will be structure-contour maps.

In the western part of the County, the Base of Groundwater Protection is below the Bearpaw Formation, in the central part of the County, the Base of Groundwater Protection is below the Oldman Formation, and in the eastern part of the County, the Base of Groundwater Protection is below the Ribstone Creek Member. A map showing the depth to the Base of Groundwater Protection is given on page 7 of this report, in Appendix A, and on the CD-ROM.
5.3.2 Aquifers

Of the 6,469 water wells in the database, 1,877 were defined as being completed below the top of bedrock and 549 completed in surficial aquifers based on lithologic information and water well completion details. However, at least a reported completion depth is available for the majority of the remaining 4,043 water wells. Assigning the water well to specific geologic units is possible only if the completion interval is identified. In order to make use of additional information within the groundwater database, it was assumed that if the total drilled depth of a water well was more than ten metres below the top of a particular geologic unit, the water well was assigned to the particular geologic unit. With this assumption, it has been possible to designate the specific upper bedrock aquifer of completion for 4,341 water wells. The remaining 411 of the total 4,685 bedrock water wells are identified as being completed in more than one bedrock aquifer.

The bedrock water wells are mainly completed in the Lower Horseshoe Canyon, Bearpaw and Oldman aquifers, as shown in the above table.

There are 1,559 records for bedrock water wells that have apparent yield values, which is 33% of the 4,685 bedrock water wells. In the County, yields for water wells completed in the upper bedrock aquifer(s) are mainly between 10 and 100 m³/day. Many of the areas with yields of more than 100 m³/day are in association with buried bedrock valleys, as shown on the adjacent figure. These higher yield areas may identify areas of increased permeability resulting from the weathering process. In addition to the 1,559 records for bedrock water wells, there are 139 records that indicate that the water well is dry, or abandoned with “insufficient water”. In order to depict a more accurate yield map, an apparent yield of 0.1 m³/day was assigned to the 139 dry holes prior to gridding. A similar value has been assigned to all dry holes completed in upper bedrock aquifer(s).

Of the 1,559 water well records with apparent yield values, 1,450 have been assigned to aquifers associated with specific geologic units. Forty-seven percent (728) of the 1,559 water wells completed in the bedrock aquifers have apparent yields that are less than 10 m³/day, 41% (634) have apparent yield values that range from 10 to 100 m³/day, and 12% (197) have apparent yields that are greater than 100 m³/day, as shown in the adjacent table.

<table>
<thead>
<tr>
<th>Geologic Unit</th>
<th>No. of Bedrock Water Wells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Horseshoe Canyon</td>
<td>2</td>
</tr>
<tr>
<td>Middle Horseshoe Canyon</td>
<td>65</td>
</tr>
<tr>
<td>Lower Horseshoe Canyon</td>
<td>2,152</td>
</tr>
<tr>
<td>Bearpaw</td>
<td>936</td>
</tr>
<tr>
<td>Oldman</td>
<td>1,129</td>
</tr>
<tr>
<td>Birch Lake</td>
<td>50</td>
</tr>
<tr>
<td>Ribstone Creek</td>
<td>7</td>
</tr>
<tr>
<td>Saline</td>
<td>1</td>
</tr>
<tr>
<td>Multiple Completions</td>
<td>410</td>
</tr>
<tr>
<td>Total</td>
<td>4,685</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aquifer</th>
<th>No. of Water Wells with Values for Apparent Yield</th>
<th>Number of Water Wells with Apparent Yields</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m³/day</td>
<td>10 to 100</td>
</tr>
<tr>
<td>Upper Horseshoe Canyon</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Middle Horseshoe Canyon</td>
<td>40</td>
<td>8</td>
</tr>
<tr>
<td>Lower Horseshoe Canyon</td>
<td>829</td>
<td>386</td>
</tr>
<tr>
<td>Bearpaw</td>
<td>259</td>
<td>101</td>
</tr>
<tr>
<td>Oldman</td>
<td>305</td>
<td>142</td>
</tr>
<tr>
<td>Birch Lake</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>Multiple Completions</td>
<td>109</td>
<td>84</td>
</tr>
<tr>
<td>Totals</td>
<td>1,559</td>
<td>728</td>
</tr>
</tbody>
</table>

Table 5. Completion Aquifer

Table 6. Apparent Yields of Bedrock Aquifers
5.3.3 Chemical Quality of Groundwater

The TDS concentrations in the groundwaters from the upper bedrock aquifer(s) range from less than 500 to more than 3,500 mg/L. In approximately 35% of the area, TDS values are more than 1,500 mg/L, with only a few small areas having a TDS concentration of less than 500 mg/L.

The relationship between TDS and sulfate concentrations shows that when TDS values in the groundwaters from the upper bedrock aquifer(s) exceed 1,200 mg/L, the sulfate concentrations exceed 400 mg/L.

The chloride concentrations in the groundwaters from the upper bedrock aquifer(s) are less than 100 mg/L in approximately 70% of the County. Chloride values of greater than the GCDWQ of 250 mg/L are mainly in vicinity of the buried bedrock valleys and in the north-central part of the County. The nitrate + nitrite (as N) concentrations are less than 0.1 mg/L in 76% of the chemical analyses for bedrock water wells. Total hardness values in the groundwaters from the upper bedrock aquifer(s) are mainly less than 200 mg/L. The higher total hardness values occur mainly in the vicinity of the buried bedrock valleys (see CD-ROM).

In the County, approximately 43% of the groundwater samples from upper bedrock aquifer(s) have fluoride concentrations that are too low (less than 0.5 mg/L) to meet the recommended daily needs of people. Approximately 44% of the groundwater samples from the entire County are between 0.5 and 1.5 mg/L and approximately 13% exceed the maximum acceptable concentration for fluoride of 1.5 mg/L. The fluoride values of greater than 1.5 mg/L occur mainly in the Oldman Aquifer where the Oldman Formation is the upper bedrock, and also sporadically in the southwestern part of the County (page A-30).

The Piper tri-linear diagrams (page A-27) show that all chemical types of groundwater occur in the bedrock aquifers. However, the majority of the groundwaters are sodium-bicarbonate types.
5.3.4 Middle Horseshoe Canyon Aquifer

The Middle Horseshoe Canyon Aquifer comprises the permeable parts of the Middle Horseshoe Canyon Formation that underlies the extreme southwestern part of the County. The thickness of the Middle Horseshoe Canyon Formation is less than 70 metres; in the majority of the County, the Middle Horseshoe Canyon Formation has been eroded.

5.3.4.1 Depth to Top

The depth to top of the Middle Horseshoe Canyon Formation is mainly less than 30 metres below ground level and is a function of the thickness of the surficial deposits (page A-32).

5.3.4.2 Apparent Yield

The apparent yields for individual water wells completed through the Middle Horseshoe Canyon Aquifer are mainly in the range of 10 to 100 m³/day. There are 40 water well records with apparent yield values, of which seven have apparent yields of more than 100 m³/day. The areas where apparent yields are greater than 100 m³/day are mainly where the depth of burial is more than 30 metres. In addition to the 40 water well records, there is one record that indicates dry, or abandoned with “insufficient water”.

In the County, there are no licensed water wells that are completed in the Middle Horseshoe Canyon Aquifer.

5.3.4.3 Quality

The groundwaters from the Middle Horseshoe Canyon Aquifer are mainly a sodium-bicarbonate-type (see Piper diagram on CD-ROM), with TDS concentrations ranging mainly between 500 and 1,000 mg/L. The sulfate concentrations are mainly below 500 mg/L. Chloride concentrations from the Middle Horseshoe Canyon Aquifer are mainly less than ten mg/L. There are no analyses where fluoride concentrations exceed 1.5 mg/L, and 12 out of 17 fluoride analyses are less than 0.5 mg/L.
5.3.5 Lower Horseshoe Canyon Aquifer

The Lower Horseshoe Canyon Aquifer comprises the permeable parts of the Lower Horseshoe Canyon Formation that underlies the western half of the County. The thickness of the Lower Horseshoe Canyon Formation is less than 140 metres; in the northeastern half of the County, the Lower Horseshoe Canyon Formation has been eroded.

5.3.5.1 Depth to Top

The depth to top of the Lower Horseshoe Canyon Formation is mainly less than 30 metres below ground level and is a function of the thickness of the surficial deposits. Along the southwestern edge of the County, the depth to the top of the Lower Horseshoe Canyon Formation is more than 50 metres below ground level (page A-35). In these areas, water well depths would need to be in the order of 130 metres to fully penetrate the lower part of the Formation.

5.3.5.2 Apparent Yield

The apparent yields for individual water wells completed through the Lower Horseshoe Canyon Aquifer are mainly less than ten m³/day. There are 829 water well records with apparent yield values, of which 46% have apparent yields of less than ten m³/day. One area where apparent yields are greater than 100 m³/day is along the northern part of the Buried Onoway Valley. In addition to the 829 water well records with apparent yields, there are 34 records that indicate dry, or abandoned with “insufficient water”.

An extended aquifer test conducted with a water supply well completed in the Lower Horseshoe Canyon Aquifer in NE 34-056-27 W4M indicated a long-term yield of 66 m³/day, based on an effective transmissivity of 29 m²/day (HCL, 1999).

In the County, there are 42 licensed water wells that are completed in the Lower Horseshoe Canyon Aquifer. The highest allocation is 44 m³/day for an Alcomdale Local Developers water supply well in 01-31-056-26 W4M. Thirty-six of the 42 licensed water wells completed through the Lower Horseshoe Canyon Aquifer could be linked to a water well in the AENV groundwater database.

5.3.5.3 Quality

The groundwaters from the Lower Horseshoe Canyon Aquifer are mainly a sodium-bicarbonate-type or sodium-sulfate-type (see Piper diagram on CD-ROM), with TDS concentrations ranging from less than 500 to more than 1,500 mg/L. The higher TDS concentrations occur mainly at the edge of the Aquifer. The sulfate concentrations are mainly below 500 mg/L, with the exception of the eastern edge of the Aquifer. Chloride concentrations from the Lower Horseshoe Canyon Aquifer are mainly less than 250 mg/L. There are 61 out of 820 analyses where fluoride concentrations exceed 1.5 mg/L.

The groundwater from the licensed Alcomdale water supply well in 01-31-056-26 W4M that is completed in the Lower Horseshoe Canyon Aquifer has a TDS concentration of 1,038 mg/L, a sulfate concentration of 92 mg/L, and a chloride concentration of 21 mg/L. The groundwater from this water supply well is a sodium-bicarbonate-type.
5.3.6 Bearpaw Aquifer

The Bearpaw Aquifer comprises the permeable parts of the Bearpaw Formation that underlies the southwestern two-thirds of the County; however, data are available for the central part of the County only. The Bearpaw Formation generally ranges from 80 to 100 metres thick; in the northeastern one-third of the County, the Bearpaw Formation has been eroded.

5.3.6.1 Depth to Top

The depth to the top of the Bearpaw Formation is mainly less than 100 metres below ground level, except where the Formation underlies the Lower Horseshoe Canyon Formation. The largest area where the top of the Bearpaw Formation is more than 100 metres below ground level is in the southwestern part of the County.

5.3.6.2 Apparent Yield

The apparent yields for individual water wells completed through the Bearpaw Aquifer are mainly in the range of 10 to 100 m³/day. There are 259 water well records with apparent yield values, of which 115 have apparent yields in the range of 10 to 100 m³/day. In addition to the 259 water well records with apparent yields, there are 50 records that indicate dry, or abandoned with "insufficient water".

In the County, there are ten licensed water wells that are completed in the Bearpaw Aquifer. The highest allocation is 20 m³/day for a water supply well licensed for irrigation purposes in 05-07-057-23 W4M.

All ten licensed water wells completed through the Bearpaw Aquifer could be linked to a water well in the AENV groundwater database.

5.3.6.3 Quality

The groundwaters from the Bearpaw Aquifer are mainly a sodium-bicarbonate-type (see Piper diagram on CD-ROM), with TDS concentrations ranging from less than 500 to more than 1,500 mg/L, with the lower concentrations occurring along the Aquifer edge. The sulfate concentrations are mainly below 500 mg/L. Chloride concentrations from the Bearpaw Aquifer are mainly less than 250 mg/L; the areas where the chloride concentrations exceed 250 mg/L occur mainly where the depth to burial is greater than 40 metres. There are 13 out of 370 analyses where fluoride concentrations exceed 1.5 mg/L.

The groundwater from the licensed water supply well in 05-07-057-23 W4M that is completed in the Bearpaw Formation has a TDS concentration of 934 mg/L, a sulfate concentration of 20 mg/L, and a chloride concentration of <1 mg/L. The groundwater from this water supply well is a sodium-bicarbonate-type.
5.3.7 Oldman Aquifer

The Oldman Aquifer comprises the permeable parts of the Oldman Formation. The Oldman Formation is present under most of the County, being absent only in a small area in the northeastern part of the County. The thickness of the Oldman Formation is in the order of 130 metres in most of the County. In the northeastern part of the County, the Oldman Formation subcrops below the surficial deposits and the thickness decreases to zero in areas where the underlying Birch Lake Member subcrops.

5.3.7.1 Depth to Top

The depth to the top of the Oldman Formation is mainly less than 40 metres in the eastern half of the County where it subcrops. In the southwestern part of the County, where the Oldman is below the Bearpaw and the Middle and Lower Horseshoe Canyon formations, the depth to the top of the Oldman Formation can be more than 300 metres.

5.3.7.2 Apparent Yield

The apparent yields for individual water wells completed through the Oldman Aquifer are mainly less than ten m\(^3\)/day. There are 305 water well records with apparent yield values, of which 142 have an apparent yield of less than ten m\(^3\)/day. In addition to the 305 water well records, there are 41 records that indicate dry, or abandoned with “insufficient water”. The large area of lower yields shown around Gibbons is based almost entirely on dry test holes.

An extended aquifer test conducted with a water supply well completed in the Oldman Aquifer in NE 26-056-23 W4M indicated a long-term yield of 72 m\(^3\)/day (HCL, 1976).

In the County, there are 12 licensed water wells that are completed in the Oldman Aquifer. The highest allocation is 34 m\(^3\)/day for an Alsask Processors Co. Ltd. water supply well used for agricultural purposes in 01-08-057-23 W4M. Nine of the 12 licensed water wells completed through the Oldman Aquifer could be linked to a water well in the AENV groundwater database.

5.3.7.3 Quality

The groundwaters from the Oldman Aquifer are mainly a sodium-bicarbonate-type (see Piper diagram on CD-ROM). Total dissolved solids concentrations are expected to range mainly from 500 to 1,500 mg/L, with higher concentrations expected between Gibbons and Morinville. The sulfate concentrations are mainly below 500 mg/L. The indications are that chloride concentrations in the Oldman Aquifer are expected to be mainly greater than 250 mg/L. There are 128 out of 487 analyses where fluoride concentrations exceed 1.5 mg/L. There is a higher percentage of fluoride exceedances in the Oldman Aquifer than in the other bedrock aquifers within the County (see CD-ROM).

The groundwater from the water supply well in NE 26-056-23 W4M that is completed in the Oldman Aquifer has a TDS concentration of 911 mg/L, a sulfate concentration of 33 mg/L, a chloride concentration of 26 mg/L and a fluoride of 2.35 mg/L. The groundwater from this water supply well is a sodium-bicarbonate-type.
5.3.8 Birch Lake Aquifer

The Birch Lake Aquifer comprises the permeable parts of the Birch Lake Member and subcrops in a small area on the northeastern part of the County. Structure contours have been prepared for the top of the Member, which underlies all of the County. The structure contours show the Member being mostly less than 60 metres thick.

5.3.8.1 Depth to Top

The depth to the top of the Birch Lake Member is variable, ranging from less than 20 metres in the northeastern part of the County to more than 400 metres in the southwestern part of the County.

5.3.8.2 Apparent Yield

There are 16 water well records in the database with sufficient information to calculate apparent yields for individual water wells completed through the Birch Lake Aquifer. Of the 16 water well records, seven have apparent yields of less than 10 m3/day, six have apparent yields that range from 10 to 100 m3/day. There are six records that indicate dry, or abandoned with "insufficient water". In Sturgeon County, there are no licensed water wells completed in the Birch Lake Aquifer.

5.3.8.3 Quality

The groundwaters from the Birch Lake Aquifer are mainly a sodium-bicarbonate-type (see Piper diagram on CD-ROM). Total dissolved solids concentrations are mainly greater than 1,000 mg/L. The indications are that chloride concentrations in the Birch Lake Aquifer are expected to be mainly more than 250 mg/L. There are five out of 30 analyses where fluoride concentrations exceed 1.5 mg/L.

5.3.9 Other Foremost Aquifers

There are seven water wells that are completed in the Ribstone Creek Aquifer, with four located in the vicinity of Redwater and three in the vicinity of Legal, with drilled depths ranging from 91 to 198 metres below ground level. There are no apparent long-term yields for water wells completed in the Ribstone Creek Aquifer within the County. There are results of 15 chemical analyses available and 12 have TDS concentrations of more than 1,000 mg/L. A detailed discussion of this Aquifer has not been completed because of the limited amount of hydrogeological information in the County.

There is even less information available for the Victoria and Brosseau aquifers than for the Ribstone Creek Aquifer.
6. Groundwater Budget

6.1 Estimated Water Use from Unlicensed Groundwater Users

An estimate of the quantity of groundwater removed from each geologic unit in Sturgeon County must include both the licensed diversions and the unlicensed use. As stated previously on page 6 of this report, the daily water requirement for livestock for the County based on the 1996 census is estimated to be 7,085 cubic metres. Of the 7,085 m³/day required for livestock, 1,171 m³/day has been licensed by Alberta Environment, which includes both surface water and groundwater. To obtain an estimate of the quantity of groundwater being diverted from the individual geologic units, it has been assumed that the remaining 5,914 m³/day of water required for livestock watering is obtained from unlicensed groundwater use. In the groundwater database for the County, there are records for 5,798 water wells that are used for domestic/stock purposes. These 5,798 water wells include both licensed and unlicensed water wells. Of the 5,798 water wells, 689 water wells are used for stock, 1,120 are used for domestic/stock purposes, and 3,989 are for domestic purposes only.

There are 1,809 water wells that are used for stock or domestic/stock purposes. There are 66 licensed groundwater users for agricultural (stock) purposes, giving 1,743 unlicensed stock water wells. (Please refer to Table 1 on page 6 for the breakdown by aquifer of the 66 licensed stock groundwater users). By dividing the number of unlicensed stock and domestic/stock water wells (1,743) into the quantity of groundwater required for stock purposes that is not licensed (5,914 m³/day), the average unlicensed water well diverts 3.4 m³/day. Because of the limitations of the data, no attempt has been made to compensate for dugouts, springs or inactive water wells, and the average stock use is considered to be 3.4 m³/day per stock water well.

Groundwater for household use does not require licensing. Under the Water Act, a residence is protected for up to 3.4 m³/day. However, the standard groundwater use for household purposes is 1.1 m³/day.

To obtain an estimate of the groundwater from each geologic unit, there are three possibilities for a water well. A summary of the possibilities and the quantity of water for each use is as follows:

- Domestic: 1.1 m³/day
- Stock: 3.4 m³/day
- Domestic/stock: 4.5 m³/day

Based on using all available domestic, domestic/stock, and stock water wells and corresponding calculations, the following table was prepared. The table shows a breakdown of the 5,798 unlicensed and licensed water wells used for domestic, stock, or domestic/stock purposes by the geologic unit in which each water well is completed. The final column in the table equals the total amount of unlicensed groundwater that is being used for both domestic and stock purposes. The data provided in the table below indicate that most of the 10,804 m³/day, estimated to be diverted from unlicensed domestic, stock, or domestic/stock water wells, is from the Lower Horseshoe Canyon and Upper Sand and Gravel aquifers.

<table>
<thead>
<tr>
<th>Aquifer Designation</th>
<th>Unlicensed and Licensed Groundwater Diversions</th>
<th>Licensed Groundwater Diversions</th>
<th>Unlicensed Groundwater Diversions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of Daily Use</td>
<td>Number of Daily Use</td>
<td>Number of Daily Use</td>
</tr>
<tr>
<td>Upper Sand/Gravel</td>
<td>513</td>
<td>564</td>
<td>115</td>
</tr>
<tr>
<td>Lower Sand/Gravel</td>
<td>278</td>
<td>305</td>
<td>115</td>
</tr>
<tr>
<td>Bedrock</td>
<td>271</td>
<td>298</td>
<td>95</td>
</tr>
<tr>
<td>Upper Horseshoe Canyon</td>
<td>53</td>
<td>58</td>
<td>2</td>
</tr>
<tr>
<td>Middle Horseshoe Canyon</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Lower Horseshoe Canyon</td>
<td>1,385</td>
<td>1,491</td>
<td>291</td>
</tr>
<tr>
<td>Bearspaw</td>
<td>624</td>
<td>696</td>
<td>88</td>
</tr>
<tr>
<td>Oldman</td>
<td>720</td>
<td>752</td>
<td>321</td>
</tr>
<tr>
<td>Birch Lake</td>
<td>40</td>
<td>44</td>
<td>10</td>
</tr>
<tr>
<td>Ribbons Creek</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Unknown</td>
<td>129</td>
<td>149</td>
<td>37</td>
</tr>
<tr>
<td>Totals</td>
<td>3,389</td>
<td>4,388</td>
<td>719</td>
</tr>
</tbody>
</table>

Table 7. Unlicensed and Licensed Groundwater Diversions
By assigning 1.1 m³/day for domestic use, 3.4 m³/day for stock use and 4.5 m³/day for domestic/stock use, and using the total maximum authorized diversion associated with any licensed water well that can be linked to a record in the database, a map has been prepared that shows the estimated groundwater use in terms of volume (licensed plus unlicensed) per section per day for the County.

There are 945 sections in the County. The estimated water well use per section can be more than 30 m³/day in 73 of the 945 sections. The most notable areas where water well use of more than 30 m³/day is expected occur mainly in the vicinity of linear bedrock lows and near populated centres, as shown on Figure 26.

In summary, the estimated total groundwater use within Sturgeon County is 24,704 m³/day, with the breakdown as shown in the adjacent table. Approximately 367 m³/day is being withdrawn from unknown aquifer units. The remaining 24,337 m³/day could be assigned to specific aquifer units.

The range in groundwater use per section is from 1.1 to more than 600 m³/day. The average groundwater use per section across the County is in the order of 16 m³/day (2.4 igpm).

Approximately 56% of the total estimated groundwater use is from licensed water wells.

6.2 Groundwater Flow

A direct measurement of groundwater recharge or discharge is not possible from the data that are available for the County. One indirect method of measuring recharge is to determine the quantity of groundwater flowing laterally through each individual aquifer. This method assumes that there is sufficient recharge to the aquifer to maintain the flow through the aquifer and the discharge is equal to the recharge. However, even the data that can be used to calculate the quantity of flow through an aquifer must be averaged and estimated. To determine the flow requires a value for the average transmissivity of the aquifer, an average hydraulic gradient and an estimate for the width of the aquifer. For the present program, the flow has been estimated for those parts of the various aquifers within the County.

The flow through each aquifer assumes that by taking a large enough area, an aquifer can be considered as homogeneous, the average gradient can be estimated from the non-pumping water-level surface, and flow takes place through the entire width of the aquifer; flow through the aquifers takes into consideration hydrogeological conditions outside the County border. Based on these assumptions, the estimated lateral groundwater flow through the individual aquifers can be summarized on the following page:
The above table indicates that the total of the licensed and unlicensed diversions from the individual aquifers is significantly more than the groundwater flowing through the aquifers, except for the Bearpaw Aquifer. The calculations of flow through individual aquifers as presented in the above table are very approximate and are intended only as a guide for future investigations.
6.2.1 Quantity of Groundwater

An estimate of the volume of groundwater stored in the sand and gravel aquifers in the surficial deposits is 0.5 to 3.0 cubic kilometres. This volume is based on an areal extent of 2,200 square kilometres and a saturated sand and gravel thickness of five metres. The variation in the total volume is based on the value of porosity that is used for the sand and gravel. One estimate of porosity is 5%, which gives the low value of the total volume. The high estimate is based on a porosity of 30% (Ozoray, Dubord and Cowen, 1990).

The adjacent water-level map has been prepared from water levels associated with water wells completed in aquifers in the surficial deposits. The water levels from these water wells were used for the calculation of the saturated thickness of the surficial deposits. In areas where the elevation of the water-level surface is below the bedrock surface, the surficial deposits are not saturated. The water-level map for the surficial deposits shows a general flow direction toward the buried bedrock valleys.

6.2.2 Recharge/Discharge

The hydraulic relationship between the groundwater in the surficial deposits and the groundwater in the bedrock aquifers is given by the non-pumping water-level surface associated with each of the hydraulic units. Where the water level in the surficial deposits is at a higher elevation than the water level in the bedrock aquifers, there is the opportunity for groundwater to move from the surficial deposits into the bedrock aquifers. This condition would be considered as an area of recharge to the bedrock aquifers and an area of discharge from the surficial deposits. The amount of groundwater that would move from the surficial deposits to the bedrock aquifers is directly related to the vertical permeability of the sediments separating the two aquifers. In areas where the surficial deposits are unsaturated, the extrapolated water level for the surficial deposits is used.

When the hydraulic gradient is from the bedrock aquifers to the surficial deposits, the condition is a discharge area from the bedrock aquifers, and a recharge area to the surficial deposits.

6.2.2.1 Surficial Deposits/Bedrock Aquifers

The hydraulic gradient between the surficial deposits and the upper bedrock aquifer(s) has been determined by subtracting the elevation of the non-pumping water-level surface associated with all water wells completed in the upper bedrock aquifer(s) from the elevation of the non-pumping water-level surface determined for all water wells in the surficial deposits. The recharge classification shown on Figure 28 includes those areas where the water-level surface in the surficial deposits is more than five metres above the water-level surface in the upper bedrock aquifer(s). The discharge areas are where the water level in the surficial deposits is more than five metres lower than the water level in the bedrock. When the water level in the surficial deposits is between five metres above and five metres below the water level in the bedrock, the area is classified as a transition.
The adjacent map shows that, in more than 40% of the County, there is a downward hydraulic gradient from the surficial deposits toward the upper bedrock aquifer(s).

This percentage is lower than in other parts of Alberta, and is mainly due to the lack of water-level data for surficial water wells in many of the areas where there is a transition condition. The few areas where there is an upward hydraulic gradient (i.e. discharge) from the bedrock to the surficial deposits are mainly in the vicinity of linear bedrock lows. The remaining parts of the County are areas where there is a transition condition.

Because of the paucity of data, a calculation of the volumes of groundwater entering and leaving the surficial deposits has not been attempted.

6.2.2.2 Bedrock Aquifers

Recharge to the bedrock aquifers within the County takes place from the overlying surficial deposits and from flow in the aquifer from outside the County. The recharge/discharge maps show that generally for most of the County, there is a downward hydraulic gradient from the surficial deposits to the bedrock, i.e. recharge to the bedrock aquifers. On a regional basis, calculating the quantity of water involved is not possible because of the complexity of the geological setting and the limited amount of data. However, because of the generally low permeability of the upper bedrock materials, the volume of water is expected to be small.

The hydraulic relationship between the surficial deposits and the Bearpaw Aquifer indicates that in more than 40% of the County where the Bearpaw Aquifer is present and there is data control, there is a downward hydraulic gradient (i.e. recharge). Discharge areas for the Bearpaw Aquifer are mainly associated with the edge of the Aquifer or in areas of linear bedrock lows.

The hydraulic relationship between the surficial deposits and the remainder of the bedrock aquifers indicates there is mainly a downward hydraulic gradient (see CD ROM).
6.3 Areas of Groundwater Decline

The areas of groundwater decline in both the sand and gravel aquifer(s) and in the bedrock aquifers have been determined by using a similar procedure in both situations. Because major development began occurring in the 1970s, the changes in water-level maps are based on the differences between water-level elevations available before 1970 and after 1984. Where the earliest water level is at a higher elevation than the latest water level, there is the possibility that some groundwater decline has occurred. Where the earliest water level is at a lower elevation than the latest water level, there is the possibility that the groundwater has risen at that location. The water level may have risen as a result of recharge in wetter years or may be a result of the water well being completed in a different bedrock aquifer. In order to determine if the water-level decline is a result of groundwater use by licensed users, the licensed groundwater users were posted on the maps.

Of the 464 water wells completed in the sand and gravel aquifer(s) with a non-pumping water level and test date, 243 are from water wells completed before 1970 and 64 are from water wells completed after 1984. As a result of the disproportionate amount and location of control points prior to and after major development, the “Changes in Water Levels in Sand and Gravel Aquifer(s)” figure has not been included in the report or on the CD-ROM. In August and September 1999, an unpublished water well survey was conducted by Mow-Tech Ltd. that included measuring the water level in water wells located in ranges 26 and 27, W4M in Sturgeon County. There were six water wells completed in Sand and Gravel Aquifer(s) where access allowed a water level to be measured by Mow-Tech Ltd. and an original NPWL existed in the groundwater database. Of these six water wells, three water levels had declined by a maximum of 1.7 metres over a twenty-two year interval, one water level had risen 1.40 metres over a nine-year interval, and two water levels remained the same as shown in the adjacent table.

Of the 3,058 bedrock water wells with a non-pumping water level and test date, 455 are from water wells completed before 1970 and 1,068 are from water wells completed after 1984. The adjacent map indicates that in 60% of the County, it is possible that the non-pumping water level has declined. Of the 59 licensed groundwater users, most occur in areas where a water-level decline exists.

Fifty-three percent of the areas where there has been a water-level decline of more than five metres in upper bedrock aquifer(s) correspond to where the estimated water well use is between 10 and 30 m³/day; 8% of the declines occurred where the estimated water well use is more than 30 m³/day; 32% of the declines occurred where the estimated water well use is less than 10 m³/day; the remaining 7% occurred where there is no groundwater use shown on Figure 26.

<table>
<thead>
<tr>
<th>Date Drilled</th>
<th>NPWL Drilled (m)</th>
<th>Date Survey</th>
<th>NPWL Survey (m)</th>
<th>Change (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26-Apr-77</td>
<td>0.9</td>
<td>12-Aug-99</td>
<td>2.6</td>
<td>-1.7</td>
</tr>
<tr>
<td>11-Oct-89</td>
<td>24.4</td>
<td>12-Sep-99</td>
<td>24.4</td>
<td>0.0</td>
</tr>
<tr>
<td>06-Sep-90</td>
<td>21.9</td>
<td>12-Sep-99</td>
<td>20.6</td>
<td>1.4</td>
</tr>
<tr>
<td>06-Jan-92</td>
<td>1.8</td>
<td>12-Aug-99</td>
<td>2.0</td>
<td>-0.2</td>
</tr>
<tr>
<td>22-Oct-92</td>
<td>0.9</td>
<td>12-Aug-99</td>
<td>0.9</td>
<td>0.0</td>
</tr>
<tr>
<td>30-Apr-93</td>
<td>5.5</td>
<td>12-Aug-99</td>
<td>5.8</td>
<td>-0.3</td>
</tr>
</tbody>
</table>

Table 10. Changes in Water Levels in Sand and Gravel Aquifer(s)
7. Potential For Groundwater Contamination

The most common sources of contaminants that can impact groundwater originate on or near the ground surface. The contaminant sources can include leachate from landfills, effluent from leaking lagoons or from septic fields, and petroleum products from storage tanks or pipeline breaks. Additional agricultural activities that generate contaminants include the improper spreading of fertilizers, pesticides, herbicides and manure. The spreading of highway salt can also degrade groundwater quality.

When activities occur that can or do produce a liquid that could contaminate groundwater, it is prudent (from a hydrogeological point of view) to locate the activities where the risk of groundwater contamination is minimal. Alternatively, if the activities must be located in an area where groundwater can be more easily contaminated, the necessary action must be taken to minimize the risk of groundwater contamination.

The potential for groundwater contamination is based on the concept that the easier it is for a liquid contaminant to move downward, the easier it is for the groundwater to become contaminated. In areas where there is groundwater discharge, liquid contaminants cannot enter the groundwater flow systems to be distributed throughout the area. In areas of groundwater recharge, low-permeability materials impede the movement of liquid contaminants downward. Therefore, if the soils develop on a low-permeability parent material of till or clay, the downward migration of a contaminant is slower relative to a high-permeability parent material such as sand and gravel of fluvial origin. Once a liquid contaminant enters the subsurface, the possibility for groundwater contamination increases if it coincides with a higher permeability material within one metre of the land surface.

To determine the nature of the materials on the land surface, the Agricultural Region of Alberta Soil Inventory Database (AGRASID) (CAESA, 1998) has been reclassified based on the relative permeability. The classification of materials is as follows:

1) high permeability - sand and gravel
2) moderate permeability - silt, sand with clay, gravel with clay, and bedrock
3) low permeability - clay and till.

To identify the areas where sand and gravel can be expected within one metre of the ground surface, all groundwater database records with lithologies were reviewed. From a total of 3,871 records with lithological descriptions in the area of the County, 542 have the top of a sand and gravel deposit present within one metre of ground level. In the remaining 3,329 records, the first sand and gravel deposit is deeper than one metre or not present. This information was gridded to prepare a distribution of where the first sand and gravel deposit could be expected within one metre of ground level.
7.1.1 Risk of Groundwater Contamination Map

The information from the reclassification of the soil map is the basis for preparing the initial risk map. The depth to the first sand and gravel is then used to modify the initial map and to prepare the final map. The criteria used for preparing the final Risk of Groundwater Contamination map are outlined in the adjacent table.

<table>
<thead>
<tr>
<th>Surface Permeability</th>
<th>Sand or Gravel Present - Top Within One Metre of Ground Surface</th>
<th>Groundwater Contamination Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>No</td>
<td>Low</td>
</tr>
<tr>
<td>Moderate</td>
<td>No</td>
<td>Moderate</td>
</tr>
<tr>
<td>High</td>
<td>No</td>
<td>High</td>
</tr>
<tr>
<td>Low</td>
<td>Yes</td>
<td>High</td>
</tr>
<tr>
<td>Moderate</td>
<td>Yes</td>
<td>High</td>
</tr>
<tr>
<td>High</td>
<td>Yes</td>
<td>Very High</td>
</tr>
</tbody>
</table>

Table 11. Risk of Groundwater Contamination Criteria

The Risk of Groundwater Contamination map shows that, in 32% of the County, there is a high or very high risk for the groundwater to be contaminated. These areas would be considered the least desirable ones for a development that has a product or by-product that could cause groundwater contamination. However, because the map has been prepared as part of a regional study, the designations are a guide only. Detailed hydrogeological studies must be completed at any proposed development site to ensure the groundwater is protected from possible contamination. At all locations, good environmental practices should be exercised in order to ensure that contaminants will not affect groundwater quality.
8. Recommendations

The present study has been based on information available from the groundwater database. The database has three problems:

1) the quality of the data
2) the coordinate system used for the horizontal control
3) the distribution of the data.

The quality of the data in the groundwater database is affected by two factors: a) the technical training of the persons collecting the data, and b) the quality control of the data. The possible options to upgrade the database include the creation of a “super” database, which includes only verified data. The first step would be to field-verify the 261 existing water wells listed in Appendix E. These water well records indicate that a complete water well drilling report is available along with at least a partial chemical analysis. The level of verification would have to include identifying the water well in the field, obtaining meaningful horizontal coordinates for the water well and the verification of certain parameters such as water level and completed depth. Even though the two water wells for which the County has responsibility do not satisfy the above criteria, it is recommended that the water wells be field-verified, water levels be measured, a water sample be collected for analysis, and a short aquifer test be conducted; the two County-operated water wells are also included in Appendix E. An attempt to update the quality of the entire database is not recommended.

An attempt in this study to link the AENV groundwater and licensing databases was about 65% successful. About one-third of licensed water wells do not appear to have corresponding records in the AENV groundwater database. There is a need to improve the quality of the AENV licensing database. It is recommended that attempts be made in a future study to find and add missing drilling records to the AENV groundwater database and to determine the aquifer in which the licensed water wells are completed.

While there are a few areas where water-level data are available, on the overall, there are an insufficient number of water levels to set up a groundwater budget. One method to obtain additional water-level data is to solicit the assistance of the water well owners who are stakeholders in the groundwater resource. In the M.D. of Rocky View and in Flagstaff County, water well owners are being provided with a tax credit if they accurately measure the water level in their water well once per week for a year. A pilot project indicated that approximately five years of records are required to obtain a reasonable data set. The cost of a five-year project involving 50 water wells would be less than the cost of one drilling program that may provide two or three observation water wells. Monitoring of water levels in domestic and stock water wells is a practice that is recommended by PFRA in the “Water Wells That Last for Generations” manual and accompanying videos (Alberta Agriculture, Food And Rural Development, 1996). Of the 261 water wells recommended for field verification, 194 of the bedrock water wells and 67 of the surficial water wells are in areas of water-level decline. Because the flow through the individual aquifers is significantly less than the total of the licensed and unlicensed diversions, it is strongly recommended that a groundwater-monitoring program be established. The cost of establishing such a groundwater-monitoring program for Sturgeon County would be in the order of $50,000.

A second approach to obtain water-level data would be to conduct a field survey to identify water wells not in use that could be used as part of an observation water well network. County personnel and/or local residents could measure the water levels in the water wells regularly.

In general, for the next level of study, the database needs updating. It requires more information from existing water wells, and additional information from new ones.
Before an attempt is made to provide a major upgrade to the level of interpretation provided in this report and the accompanying maps and groundwater query, it is recommended that the 261 water wells for which water well drilling reports are available be subjected to the following actions (see pages C-2 to C-3):

1) The horizontal location of the water well should be determined within ten metres. The coordinates must be in 10TM NAD 27 or some other system that will allow conversion to 10TM NAD 27 coordinates.

2) A four-hour aquifer test (two hours of pumping and two hours of recovery) should be performed with the water well to obtain a realistic estimate for the transmissivity of the aquifer in which the water well is completed.

3) Water samples should be collected for chemical analysis after five and 115 minutes of pumping, and analyzed for major and minor ions.

A list of the 261 water wells that could be considered for the above program is given in Appendix E.

In addition to the data collection associated with the existing water wells, all available geophysical logs should be interpreted to establish a more accurate spatial definition of individual aquifers.

There is also a need to provide the water well drillers with feedback on the reports they are submitting to the regulatory agencies. The feedback is necessary to allow for a greater degree of uniformity in the reporting process. This is particularly true when trying to identify the bedrock surface. One method of obtaining uniformity would be to have the water well drilling reports submitted to the AENV Resource Data Division in an electronic form. The money presently being spent by AENV to transpose the paper form to the electronic form should be used to allow for a technical review of the data and follow-up discussions with the drillers.

An effort should be made to form a partnership with the petroleum industry. The industry spends millions of dollars each year collecting information relative to water wells. Proper coordination of this effort could provide significantly better information from which future regional interpretations could be made. This could be accomplished by the County taking an active role in the activities associated with the construction of lease sites for the drilling of hydrocarbon wells and conducting of seismic programs.

Groundwater is a renewable resource and it must be managed.
9. References

10. Conversions

<table>
<thead>
<tr>
<th>Multiply</th>
<th>by</th>
<th>To Obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length/Area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>feet</td>
<td>0.304 785</td>
<td>metres</td>
</tr>
<tr>
<td>metres</td>
<td>3.281 000</td>
<td>feet</td>
</tr>
<tr>
<td>hectares</td>
<td>2.471 054</td>
<td>acres</td>
</tr>
<tr>
<td>centimetre</td>
<td>0.032 808</td>
<td>feet</td>
</tr>
<tr>
<td>centimetre</td>
<td>0.393 701</td>
<td>inches</td>
</tr>
<tr>
<td>acres</td>
<td>0.404 686</td>
<td>hectares</td>
</tr>
<tr>
<td>inches</td>
<td>25.400 000</td>
<td>millimetres</td>
</tr>
<tr>
<td>miles</td>
<td>1.609 344</td>
<td>kilometres</td>
</tr>
<tr>
<td>kilometer</td>
<td>0.621 370</td>
<td>miles (statute)</td>
</tr>
<tr>
<td>square feet (ft²)</td>
<td>0.092 903</td>
<td>square metres (m²)</td>
</tr>
<tr>
<td>square metres (m²)</td>
<td>10.763 910</td>
<td>square feet (ft²)</td>
</tr>
<tr>
<td>square metres (m²)</td>
<td>0.000 001</td>
<td>square kilometres (km²)</td>
</tr>
</tbody>
</table>

Concentration		
grains/gallon (UK)	14.270 050	parts per million (ppm)
ppm	0.998 859	mg/L
mg/L	1.001 142	ppm

Volume (capacity)		
acre feet	1233.481 838	cubic metres
cubic feet	0.028 317	cubic metres
cubic metres	35.314 667	cubic feet
cubic metres	219.969 248	gallons (UK)
cubic metres	264.172 050	gallons (US liquid)
cubic metres	1000.000 000	litres
gallons (UK)	0.004 546	cubic metres
imperial gallons	4.546 000	litres

Rate		
litres per minute (lpm)	0.219 974	UK gallons per minute (igpm)
litres per minute	1.440 000	cubic metres/day (m³/day)
igpm	6.546 300	cubic metres/day (m³/day)
cubic metres/day	0.152 759	igpm

11. Glossary

Aquifer a formation, group of formations, or part of a formation that contains saturated permeable rocks capable of transmitting groundwater to water wells or springs in economical quantities

Available Drawdown in a confined aquifer, the distance between the non-pumping water level and the top of the aquifer

in an unconfined aquifer (water table aquifer), two thirds of the saturated thickness of the aquifer

Borehole includes all “work types” except springs

Dewatering the removal of groundwater from an aquifer for purposes other than use

Deltaic a depositional environment in standing water near the mouth of a river

Dfb climate classification that relates to long, cool summers and severe winters (Thornthwaite and Mather, 1957)

Evapotranspiration a combination of evaporation from open bodies of water, evaporation from soil surfaces, and transpiration from the soil by plants (Freeze and Cherry, 1979)

Facies the aspect or character of the sediment within beds of one and the same age (Pettijohn, 1957)

Fluvial produced by the action of a stream or river

Friable poorly cemented

Hydraulic Conductivity the rate of flow of water through a unit cross-section under a unit hydraulic gradient; units are length/time

km kilometre

Kriging a geo-statistical method for gridding irregularly-spaced data (Cressie, 1990)

Lacustrine fine-grained sedimentary deposits associated with a lake environment and not including shore-line deposits

Lithology description of rock material

Lsd Legal Subdivision

m metres

mm millimetres

m²/day metres squared per day

m³ cubic metres

m³/day cubic metres per day

mg/L milligrams per litre

Obs WW Observation Water Well
Piper tri-linear diagram: a method that permits the major cation and anion compositions of single or multiple samples to be represented on a single graph. This presentation allows groupings or trends in the data to be identified. From the Piper tri-linear diagram, it can be seen that the groundwater from this sample water well is a sodium-bicarbonate-type. The chemical type has been determined by graphically calculating the dominant cation and anion. For a more detailed explanation, please refer to Freeze and Cherry, 1979.

Rock: earth material below the root zone

Surficial Deposits: includes all sediments above the bedrock

Thalweg: the line connecting the lowest points along a stream bed or valley; longitudinal profile

Till: a sediment deposited directly by a glacier that is unsorted and consisting of any grain size ranging from clay to boulders

Transmissivity: the rate at which water is transmitted through a unit width of an aquifer under a unit hydraulic gradient: a measure of the ease with which groundwater can move through the aquifer

Apparent Transmissivity: the value determined from a summary of aquifer test data, usually involving only two water-level readings

Effective Transmissivity: the value determined from late pumping and/or late recovery water-level data from an aquifer test

Aquifer Transmissivity: the value determined by multiplying the hydraulic conductivity of an aquifer by the thickness of the aquifer

Water Well: a hole in the ground for the purpose of obtaining groundwater; “work type” as defined by AENV includes test hole, chemistry, deepened, well inventory, federal well survey, reconditioned, reconstructed, new, old well-test

Yield: a regional analysis term referring to the rate a properly completed water well could be pumped, if fully penetrating the aquifer

Apparent Yield: based mainly on apparent transmissivity

Long-Term Yield: based on effective transmissivity

AENV: Alberta Environment

AMSL: above mean sea level

BGP: Base of Groundwater Protection

DEM: Digital Elevation Model

DST: drill stem test

EUB: Alberta Energy and Utilities Board
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCDWQ</td>
<td>Guidelines for Canadian Drinking Water Quality</td>
</tr>
<tr>
<td>NPWL</td>
<td>non-pumping water level</td>
</tr>
<tr>
<td>PFRA</td>
<td>Prairie Farm Rehabilitation Administration</td>
</tr>
<tr>
<td>TDS</td>
<td>Total Dissolved Solids</td>
</tr>
<tr>
<td>WSW</td>
<td>Water Source Well or Water Supply Well</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Depth to Top of Birch Lake Member</td>
<td>44</td>
</tr>
<tr>
<td>Total Dissolved Solids in Groundwater from Oldman Aquifer</td>
<td>43</td>
</tr>
<tr>
<td>Apparent Yield for Water Wells Completed through Oldman Aquifer</td>
<td>42</td>
</tr>
<tr>
<td>Depth to Top of Oldman Formation</td>
<td>41</td>
</tr>
<tr>
<td>Total Dissolved Solids in Groundwater from Bearpaw Aquifer</td>
<td>40</td>
</tr>
<tr>
<td>Apparent Yield for Water Wells Completed through Bearpaw Aquifer</td>
<td>39</td>
</tr>
<tr>
<td>Depth to Top of Bearpaw Formation</td>
<td>38</td>
</tr>
<tr>
<td>Total Dissolved Solids in Groundwater from Lower Horseshoe Canyon Aquifer</td>
<td>37</td>
</tr>
<tr>
<td>Apparent Yield for Water Wells Completed through Lower Horseshoe Canyon Aquifer</td>
<td>36</td>
</tr>
<tr>
<td>Depth to Top of Lower Horseshoe Canyon Formation</td>
<td>35</td>
</tr>
<tr>
<td>Total Dissolved Solids in Groundwater from Middle Horseshoe Canyon Aquifer</td>
<td>34</td>
</tr>
<tr>
<td>Apparent Yield for Water Wells Completed through Middle Horseshoe Canyon Aquifer</td>
<td>33</td>
</tr>
<tr>
<td>Depth to Top of Middle Horseshoe Canyon Formation</td>
<td>32</td>
</tr>
<tr>
<td>Total Dissolved Solids in Groundwater from Upper Horseshoe Canyon Aquifer</td>
<td>31</td>
</tr>
<tr>
<td>Apparent Yield for Water Wells Completed through Upper Horseshoe Canyon Aquifer</td>
<td>30</td>
</tr>
<tr>
<td>Depth to Top of Upper Horseshoe Canyon Formation</td>
<td>29</td>
</tr>
<tr>
<td>Fluoride in Groundwater from Upper Bedrock Aquifer(s)</td>
<td>28</td>
</tr>
<tr>
<td>Total Dissolved Solids in Groundwater from Upper Bedrock Aquifer(s)</td>
<td>27</td>
</tr>
<tr>
<td>Apparent Yield for Water Wells Completed in Sand and Gravel Aquifer(s)</td>
<td>26</td>
</tr>
<tr>
<td>Total Dissolved Solids in Groundwater from Surficial Deposits</td>
<td>25</td>
</tr>
<tr>
<td>Apparent Yield for Water Wells Completed through Lower Sand and Gravel Aquifer</td>
<td>24</td>
</tr>
<tr>
<td>Bedrock Geology</td>
<td>23</td>
</tr>
<tr>
<td>E-Log Showing Base of Foremost Formation</td>
<td>22</td>
</tr>
<tr>
<td>Piper Diagrams</td>
<td>21</td>
</tr>
<tr>
<td>Apparent Yield for Water Wells Completed in Upper Bedrock Aquifer(s)</td>
<td>20</td>
</tr>
<tr>
<td>Total Dissolved Solids in Groundwater from Upper Bedrock Aquifer(s)</td>
<td>19</td>
</tr>
<tr>
<td>Fluoride in Groundwater from Upper Bedrock Aquifer(s)</td>
<td>18</td>
</tr>
<tr>
<td>Water Wells Completed In Surficial Deposits</td>
<td>17</td>
</tr>
<tr>
<td>Total Dissolved Solids in Groundwater from Surficial Deposits</td>
<td>16</td>
</tr>
<tr>
<td>Bedrock Topography</td>
<td>15</td>
</tr>
<tr>
<td>Thickness of Surficial Deposits</td>
<td>14</td>
</tr>
<tr>
<td>Total Dissolved Solids in Groundwater from Surficial Deposits</td>
<td>13</td>
</tr>
<tr>
<td>Bedrock Topography</td>
<td>12</td>
</tr>
<tr>
<td>Thickness of Sand and Gravel Deposits</td>
<td>11</td>
</tr>
<tr>
<td>Apparent Yield for Water Wells Completed through Upper Sand and Gravel Aquifer</td>
<td>10</td>
</tr>
<tr>
<td>Bedrock Topography</td>
<td>9</td>
</tr>
<tr>
<td>Thickness of Surficial Deposits</td>
<td>8</td>
</tr>
<tr>
<td>Apparent Yield for Water Wells Completed through Lower Sand and Gravel Aquifer</td>
<td>7</td>
</tr>
<tr>
<td>Bedrock Topography</td>
<td>6</td>
</tr>
<tr>
<td>Thickness of Surficial Deposits</td>
<td>5</td>
</tr>
<tr>
<td>Apparent Yield for Water Wells Completed through Oldman Aquifer</td>
<td>4</td>
</tr>
<tr>
<td>Bedrock Topography</td>
<td>3</td>
</tr>
<tr>
<td>Thickness of Surficial Deposits</td>
<td>2</td>
</tr>
<tr>
<td>Apparent Yield for Water Wells Completed through Bearpaw Aquifer</td>
<td>1</td>
</tr>
<tr>
<td>Bedrock Topography</td>
<td>4</td>
</tr>
<tr>
<td>Thickness of Surficial Deposits</td>
<td>3</td>
</tr>
<tr>
<td>Apparent Yield for Water Wells Completed through Oldman Aquifer</td>
<td>2</td>
</tr>
<tr>
<td>Bedrock Topography</td>
<td>1</td>
</tr>
<tr>
<td>Thickness of Surficial Deposits</td>
<td>4</td>
</tr>
</tbody>
</table>
Apparent Yield for Water Wells Completed through Birch Lake Aquifer ... 45
Total Dissolved Solids in Groundwater from Birch Lake Aquifer .. 46
Depth to Top of Ribstone Creek Member ... 47
Estimated Water Well Use Per Section ... 48
Non-Pumping Water-Level Surface in Surficial Deposits Based on Water Wells Less than 20 Metres Deep...... 49
Recharge/Discharge Areas between Surficial Deposits and Upper Bedrock Aquifer(s)................................. 50
Recharge /Discharge Areas between Surficial Deposits and Bearpaw Aquifer .. 51
Changes in Water Levels in Upper Bedrock Aquifer(s) .. 52
Risk of Groundwater Contamination ... 53
Surface Casing Types used in Drilled Water Wells

<table>
<thead>
<tr>
<th>Year</th>
<th>Steel</th>
<th>Galvanized Steel</th>
<th>Plastic</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td><1955</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1955</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1955</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1960</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1965</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Licensed Water Wells

Licensed Groundwater Users (m³/day)

- Agricultural: < 10 (36), 10 to 100 (30), > 100 (9)
- Municipal: < 10 (3), 10 to 100 (6), > 100 (3)
- Dewatering: < 10 (0), 10 to 100 (1), > 100 (11)
- Commercial: < 10 (2), 10 to 100 (5), > 100 (4)
- Other: < 10 (3), 10 to 100 (3), > 100 (9)

Symbols:
- Buried bedrock valley
- Meltwater channel
Location of Water Wells and Springs

- Completion Aquifer
- Bedrock
- Surficial
- Bored Water Well
- Spring
- Buried bedrock valley
- Meltwater channel
Depth to Base of Groundwater Protection
(modified after EUB, 1995)
Generalized Cross-Section
(for terminology only)

- **A**: Ground surface
- **B**: Bedrock surface
- **C**: Base of weathering
- **D**: Base of groundwater protection
- **E**: Water level in surficial deposits
- **F**: Water level in bedrock aquifers
- **G**: Bedrock discharge zone
- **H**: First sand and gravel
- **I**: Upper sand and gravel aquifer
- **J**: Lower sand and gravel aquifer

Surficial deposits
- Till, clay and silt
- Sand and gravel
- Saturated sand and gravel

Bedrock
- Shale
- Sandstone
- Coal
- Aquifer

Non-pumping water level

Completion interval
<table>
<thead>
<tr>
<th>Lithology</th>
<th>Lithologic Description</th>
<th>Average Thickness (m)</th>
<th>Designation</th>
<th>Average Thickness (m)</th>
<th>Designation</th>
<th>Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sand, gravel, till, clay, silt</td>
<td><70</td>
<td>Surficial Deposits</td>
<td><70</td>
<td>Upper</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><50</td>
<td>Lower</td>
<td></td>
</tr>
<tr>
<td></td>
<td>shale, sandstone, coal, bentonite, limestone, ironstone</td>
<td>300-380</td>
<td>Horseshoe Canyon Formation</td>
<td>~100</td>
<td>Upper</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~100</td>
<td>Middle</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~170</td>
<td>Lower</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sandstone, siltstone, shale, coal</td>
<td>60-120</td>
<td>Bearpaw Formation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sandstone, siltstone</td>
<td><300</td>
<td>Oldman Formation</td>
<td><25</td>
<td>Lethbridge Coal Zone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>shale, coal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sandstone</td>
<td><300</td>
<td>Foremost Formation</td>
<td><70</td>
<td>Birch Lake Member</td>
<td>Taber Coal Zone</td>
</tr>
<tr>
<td></td>
<td>shale</td>
<td></td>
<td></td>
<td><60</td>
<td>Ribstone Creek Member</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><70</td>
<td>Victoria Member</td>
<td>McKay Coal Zone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0-30</td>
<td>Brosseau Member</td>
<td></td>
</tr>
</tbody>
</table>
Hydrogeological Map

Maximum Probable Apparent Water Well Yield (m³/day)

- Buried bedrock valley
- Meltwater channel
Cross-Section A - A'

Sturgeon County
Cross-Section D - D'

D

Sturgeon County

D'

Surficial Deposits
- Upper Surficial
- Lower Surficial

Bedrock
- Lower Bearpaw
- Oldman Formation
- Birch Member
- Lake Ribstone Creek Member

Buried Beverly Valley
- City of St. Albert

Big Lake
Buried Sturgeon Valley
- Town of Gibbons

Sturgeon River
Buried Egremont Valley
- Town of Redwater

Redwater River

Victoria Member

Line of Section

Vertical exaggeration x 60

Elevation in Metres AMSL

kms

0 10 20

NPWL
Completion Interval
Base of Groundwater Protection (modified after FEPR, June 1995)
Thickness of Surficial Deposits

- Absent
- Buried bedrock valley
- Meltwater channel

Legend:

- Absent
- Buried bedrock valley
- Meltwater channel

Map showing thickness of surficial deposits with various symbols and color coding for different thickness ranges.
Thickness of Sand and Gravel Deposits

- Thickness of Sand and Gravel Deposits
- Absent
- Buried bedrock valley
- Meltwater channel

Map showing the thickness of sand and gravel deposits in Sturgeon County, Part of the North Saskatchewan River Basin.
Amount of Sand and Gravel in Surficial Deposits

- Sand and Gravel Absent
- Buried bedrock valley
- Meltwater channel

Legend:

- % Buried bedrock valley
- Meltwater channel

Color Scale:

- 10
- 30

Legend Key:

- Sand and Gravel Absent
Water Wells Completed In Surficial Deposits

Completed in
- Upper surficial deposits
- Lower surficial deposits

- Buried bedrock valley
- Meltwater channel
Thickness of Sand and Gravel Aquifer(s)

- Absent
- Buried bedrock valley
- Meltwater channel

Legend:

- 0 to 5 m
- 5 to 10 m
- >10 m

Map showing thickness of sand and gravel aquifer(s) with various values in meters. The map includes grid lines and symbols indicating the presence of buried bedrock valley and meltwater channel.
Apparent Yield for Water Wells Completed in Sand and Gravel Aquifer(s)
Total Dissolved Solids in Groundwater from Surficial Deposits

- Saturated Surficial Deposits Absent
- Buried bedrock valley
- Meltwater channel

Legend:
- 500 mg/L
- 1000 mg/L
- 1500 mg/L
Apparent Yield for Water Wells Completed through Upper Sand and Gravel Aquifer
Apparent Yield for Water Wells Completed through Lower Sand and Gravel Aquifer
Bedrock Geology

- Lower Horseshoe Canyon Formation
- Middle Horseshoe Canyon Formation
- Upper Horseshoe Canyon Formation
- Bearpaw Formation
- Oldman Formation
- Oldman Formation
- Birch Lake Member
E-Log Showing Base of Foremost Formation
Piper Diagrams

Surficial Deposits

Bedrock Aquifers
Apparent Yield for Water Wells Completed in Upper Bedrock Aquifer(s)

- **Sturgeon County, Part of the North Saskatchewan River Basin**
- **Regional Groundwater Assessment, Parts of Tp 053 to 058, R 20 to 28, W4M & Tp 054 to 057, R 01, W5M**

- **Apparent Yield for Water Wells Completed in Upper Bedrock Aquifer(s)**

- **Legend:**
 - **dry**
 - **Buried bedrock valley**
 - **Meltwater channel**

- **Color Scale:**
 - 10 m³/day
 - 100 m³/day
 - 1.5 gpm
 - 15 gpm
Fluoride in Groundwater from Upper Bedrock Aquifer(s)
Depth to Top of Upper Horseshoe Canyon Formation

m AMSL

775 780

Absent
Depth to Top of Middle Horseshoe Canyon Formation
Apparent Yield for Water Wells Completed through Middle Horseshoe Canyon Aquifer
Total Dissolved Solids in Groundwater from Middle Horseshoe Canyon Aquifer
Depth to Top of Lower Horseshoe Canyon Formation

[Map showing depth to the top of the Lower Horseshoe Canyon Formation with color-coded intervals and legend for depths of 10, 30, and 50 meters, and an area marked "Absent".]
Apparent Yield for Water Wells Completed through Lower Horseshoe Canyon Aquifer
Total Dissolved Solids in Groundwater from Lower Horseshoe Canyon Aquifer

mg/L

500 1000 1500

Absent
Depth to Top of Bearpaw Formation

20 40 60 80 100 120 140 m

Absent
Apparent Yield for Water Wells Completed through Bearpaw Aquifer

- Dry
- Absent
- No data for Bearpaw Formation
- Buried bedrock valley
- Meltwater channel

Legend:
- m³/day
- igpm

Scale:
- 10 m³/day
- 15 igpm
Total Dissolved Solids in Groundwater from Bearpaw Aquifer

Legend:
- Absent
- No data for Bearpaw Formation

Scale:
- 500 mg/L
- 1000 mg/L
- 1500 mg/L
Depth to Top of Oldman Formation

![Map showing depth to top of Oldman Formation with indicated distances in meters.]

Legend:
- Absent

Distance scale:
- 20 m
- 60 m
- 100 m
- 140 m
- 180 m
- 220 m
- 260 m
- 300 m
Apparent Yield for Water Wells Completed through Oldman Aquifer

- Dry
- Absent
- No data for Oldman Formation
- Buried bedrock valley
- Meltwater channel

Scale:
- 10 m³/day
- 100 m³/day
- 1.5 gpm
- 15 gpm
Total Dissolved Solids in Groundwater from Oldman Aquifer

<table>
<thead>
<tr>
<th>mg/L</th>
<th>500</th>
<th>1000</th>
<th>1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>01, W5M</td>
<td>25</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>055</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>057</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no data for Oldman Formation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Depth to Top of Birch Lake Member
Apparent Yield for Water Wells Completed through Birch Lake Aquifer
Total Dissolved Solids in Groundwater from Birch Lake Aquifer

mg/L

500 1000 1500

no data for Birch Lake Member
Non-Pumping Water-Level Surface in Surficial Deposits Based on Water Wells Less than 20 Metres Deep
Recharge/Discharge Areas between Surficial Deposits and Upper Bedrock Aquifer(s)
Recharge/Discharge Areas between Surficial Deposits and Bearpaw Aquifer

- Absent
- No data for Bearpaw Formation
- Buried bedrock valley
- Meltwater channel

Legend:
- Recharge
- Transition
- Discharge
Changes in Water Levels in Upper Bedrock Aquifer(s)

Licensed Groundwater User (m³/day)
- <10
- 10 - 30
- >30

-5 0 5

- Buried bedrock valley
- Meltwater channel
Risk of Groundwater Contamination

Low Moderate High Very High
STURGEON COUNTY
Appendix B

Maps and Figures on CD-ROM
1) General
 - Index Map/Surface Topography
 - Surface Casing Types used in Drilled Water Wells
 - Location of Water Wells and Springs
 - Depth of Existing Water Wells
 - Depth to Base of Groundwater Protection
 - Generalized Cross-Section (for terminology only)
 - Geologic Column
 - Hydrogeological Map
 - Cross-Section A - A'
 - Cross-Section B - B'
 - Cross-Section C - C'
 - Cross-Section D - D'
 - Bedrock Topography
 - Bedrock Geology
 - E-Log Showing Base of Foremost Formation
 - Risk of Groundwater Contamination
 - Relative Permeability
 - Licensed Water Wells
 - Estimated Water Well Use Per Section
 - Water Wells Recommended for Field Verification

2) Surficial Aquifers
 a) Surficial Deposits
 - Thickness of Surficial Deposits
 - Non-Pumping Water-Level Surface in Surficial Deposits Based on Water Wells Less than 20 Metres Deep
 - Total Dissolved Solids in Groundwater from Surficial Deposits
 - Sulfate in Groundwater from Surficial Deposits
 - Nitrate + Nitrite (as N) in Groundwater from Surficial Deposits
 - Chloride in Groundwater from Surficial Deposits
 - Total Hardness in Groundwater from Surficial Deposits
 - Piper Diagram - Surficial Deposits
 - Thickness of Sand and Gravel Deposits
 - Amount of Sand and Gravel in Surficial Deposits
 - Thickness of Sand and Gravel Aquifer(s)
 - Water Wells Completed in Surficial Deposits
 - Apparent Yield for Water Wells Completed in Sand and Gravel Aquifer(s)

 b) First Sand and Gravel
 - Thickness of First Sand and Gravel
 - First Sand and Gravel - Saturation Thickness

 c) Upper Sand and Gravel
 - Thickness of Upper Surficial Deposits
 - Thickness of Upper Sand and Gravel (not all drill holes fully penetrate surficial deposits)
 - Apparent Yield for Water Wells Completed through Upper Sand and Gravel Aquifer

 d) Lower Sand and Gravel
 - Structure-Contour Map - Top of Lower Surficial Deposits
 - Depth to Top of Lower Surficial Deposits
 - Thickness of Lower Surficial Deposits
 - Thickness of Lower Sand and Gravel (not all drill holes fully penetrate surficial deposits)
 - Apparent Yield for Water Wells Completed through Lower Sand and Gravel Aquifer
 - Non-Pumping Water-Level Surface in Lower Sand and Gravel Aquifer
3) Bedrock Aquifers
 a) General
 Apparent Yield for Water Wells Completed in Upper Bedrock Aquifer(s)
 Total Dissolved Solids in Groundwater from Upper Bedrock Aquifer(s)
 Sulfate in Groundwater from Upper Bedrock Aquifer(s)
 Chloride in Groundwater from Upper Bedrock Aquifer(s)
 Fluoride in Groundwater from Upper Bedrock Aquifer(s)
 Total Hardness of Groundwater from Upper Bedrock Aquifer(s)
 Piper Diagram - Bedrock Aquifers
 Recharge/Discharge Areas between Surficial Deposits and Upper Bedrock Aquifer(s)
 Non-Pumping Water-Level Surface in Upper Bedrock Aquifer(s)
 Changes in Water Levels in Upper Bedrock Aquifer(s)
 b) Upper Horseshoe Canyon Formation
 Depth to Top of Upper Horseshoe Canyon Formation
 Structure-Contour Map - Upper Horseshoe Canyon Formation
 c) Middle Horseshoe Canyon Formation
 Depth to Top of Middle Horseshoe Canyon Formation
 Structure-Contour Map - Middle Horseshoe Canyon Formation
 Non-Pumping Water-Level Surface - Middle Horseshoe Canyon Aquifer
 Apparent Yield for Water Wells Completed through Middle Horseshoe Canyon Aquifer
 Total Dissolved Solids in Groundwater from Middle Horseshoe Canyon Aquifer
 Sulfate in Groundwater from Middle Horseshoe Canyon Aquifer
 Chloride in Groundwater from Middle Horseshoe Canyon Aquifer
 Fluoride in Groundwater from Middle Horseshoe Canyon Aquifer
 Piper Diagram - Middle Horseshoe Canyon Aquifer
 Recharge/Discharge Areas between Surficial Deposits and Middle Horseshoe Canyon Aquifer
 d) Lower Horseshoe Canyon Formation
 Depth to Top of Lower Horseshoe Canyon Formation
 Structure-Contour Map - Lower Horseshoe Canyon Formation
 Non-Pumping Water-Level Surface - Lower Horseshoe Canyon Aquifer
 Apparent Yield for Water Wells Completed through Lower Horseshoe Canyon Aquifer
 Total Dissolved Solids in Groundwater from Lower Horseshoe Canyon Aquifer
 Sulfate in Groundwater from Lower Horseshoe Canyon Aquifer
 Chloride in Groundwater from Lower Horseshoe Canyon Aquifer
 Fluoride in Groundwater from Lower Horseshoe Canyon Aquifer
 Piper Diagram - Lower Horseshoe Canyon Aquifer
 Recharge/Discharge Areas between Surficial Deposits and Lower Horseshoe Canyon Aquifer
 e) Bearpaw Formation
 Depth to Top of Bearpaw Formation
 Structure-Contour Map - Bearpaw Formation
 Non-Pumping Water-Level Surface - Bearpaw Aquifer
 Apparent Yield for Water Wells Completed through Bearpaw Aquifer
 Total Dissolved Solids in Groundwater from Bearpaw Aquifer
 Sulfate in Groundwater from Bearpaw Aquifer
 Chloride in Groundwater from Bearpaw Aquifer
 Fluoride in Groundwater from Bearpaw Aquifer
 Piper Diagram - Bearpaw Aquifer
 Recharge/Discharge Areas between Surficial Deposits and Bearpaw Aquifer
f) Oldman Formation
 Depth to Top of Oldman Formation
 Structure-Contour Map - Oldman Formation
 Non-Pumping Water-Level Surface - Oldman Aquifer
 Apparent Yield for Water Wells Completed through Oldman Aquifer
 Total Dissolved Solids in Groundwater from Oldman Aquifer
 Sulfate in Groundwater from Oldman Aquifer
 Chloride in Groundwater from Oldman Aquifer
 Fluoride in Groundwater from Oldman Aquifer
 Piper Diagram - Oldman Aquifer
 Recharge/Discharge Areas between Surficial Deposits and Oldman Aquifer

 g) Birch Lake Member
 Depth to Top of Birch Lake Member
 Structure-Contour Map - Birch Lake Member
 Non-Pumping Water-Level Surface - Birch Lake Aquifer
 Apparent Yield for Water Wells Completed through Birch Lake Aquifer
 Total Dissolved Solids in Groundwater from Birch Lake Aquifer
 Sulfate in Groundwater from Birch Lake Aquifer
 Chloride in Groundwater from Birch Lake Aquifer
 Fluoride in Groundwater from Birch Lake Aquifer
 Piper Diagram - Birch Lake Aquifer
 Recharge/Discharge Areas between Surficial Deposits and Birch Lake Aquifer

 h) Ribstone Creek Member
 Depth to Top of Ribstone Creek Member
 Structure-Contour Map - Ribstone Creek Member
General Water Well Information

Domestic Water Well Testing ... 2
Purpose and Requirements.. 2
Procedure ... 3
 Site Diagrams.. 3
 Surface Details.. 3
 Groundwater Discharge Point .. 3
 Water-Level Measurements .. 3
 Discharge Measurements .. 3
 Water Samples.. 3
Water Act - Water (Ministerial) Regulation ... 4
Water Act – Flowchart .. 5
Interpretation of Chemical Analysis of Drinking Water ... 6
Additional Information... 8
Domestic Water Well Testing

Purpose and Requirements

The purpose of the testing of domestic water wells is to obtain background data related to:

1) the non-pumping water level for the aquifer - Has there been any lowering of the level since the last measurement?
2) the specific capacity of the water well, which indicates the type of contact the water well has with the aquifer;
3) the transmissivity of the aquifer and hence an estimate of the projected long-term yield for the water well;
4) the chemical, bacteriological and physical quality of the groundwater from the water well.

The testing procedure involves conducting an aquifer test and collecting of groundwater samples for analysis by an accredited laboratory. The date and time of the testing are to be recorded on all data collection sheets. A sketch showing the location of the water well relative to surrounding features is required. The sketch should answer the question, "If this water well is tested in the future, how will the person doing the testing know this is the water well I tested?"

The water well should be taken out of service as long as possible before the start of the aquifer test, preferably not less than 30 minutes before the start of pumping. The non-pumping water level is to be measured 30, 10, and 5 minutes before the start of pumping and immediately before the start of pumping which is to be designated as time 0 for the test. All water levels must be from the same designated reference, usually the top of the casing. Water levels are to be measured during the pumping interval and during the recovery interval after the pump has been turned off; all water measurements are to be with an accuracy of ±0.01 metres.

During the pumping and recovery intervals, the water level is to be measured at the appropriate times. An example of the time schedule for a four-hour test is as follows, measured in minutes after the pump is turned on and again after the pump is turned off:

1, 2, 3, 4, 6, 8, 10, 13, 16, 20, 25, 32, 40, 50, 64, 80, 100, 120.

For a four-hour test, the reading after 120 minutes of pumping will be the same as the 0 minutes of recovery. Under no circumstance will the recovery interval be less than the pumping interval.

Flow rate during the aquifer test should be measured and recorded with the maximum accuracy possible. Ideally, a water meter with an accuracy of better than ±1% displaying instantaneous and total flow should be used. If a water meter is not available, then the time required to completely fill a container of known volume should be recorded, noting the time to the nearest 0.5 seconds or better. Flow rate should be determined and recorded often to ensure a constant pumping rate.

Groundwater samples should be collected as soon as possible after the start of pumping and within 10 minutes of the end of pumping. Initially only the groundwater samples collected near the end of the pumping interval need to be submitted to the accredited laboratory for analysis. All samples must be properly stored for transportation to the laboratory and, in the case of the bacteriological analysis, there is a maximum time allowed between the time the sample is collected and the time the sample is delivered to the laboratory. The first samples collected are only analyzed if there is a problem or a concern with the first samples submitted to the laboratory.
Procedure

Site Diagrams

These diagrams are a map showing the distance to nearby significant features. This would include things like a corner of a building (house, barn, garage etc.) or the distance to the half-mile or mile fence. The description should allow anyone not familiar with the site to be able to unequivocally identify the water well that was tested. In lieu of a map, UTM coordinates accurate to within five metres would be acceptable. If a hand-held GPS is used, the post-processing correction details must be provided.

Surface Details

The type of surface completion must be noted. This will include such things as a pitless adapter, well pit, pump house, in basement, etc. Also, the reference point used for measuring water levels needs to be noted. This would include top of casing (TOC) XX metres above ground level; well pit lid, XX metres above TOC; TOC in well pit XX metres below ground level.

Groundwater Discharge Point

Where was the flow of groundwater discharge regulated? For example was the discharge through a hydrant downstream from the pressure tank; discharged directly to ground either by connecting directly above the well seal or by pulling the pump up out of the pitless adapter; from a tap on the house downstream from the pressure tank? Also note must be made if any action was taken to ensure the pump would operate continuously during the pumping interval and whether the groundwater was passing through any water-treatment equipment before the discharge point.

Water-Level Measurements

How were the water-level measurements obtained? If obtained using a contact gauge, what type of cable was on the tape, graduated tape or a tape with tags? If a tape with tags, when was the last time the tags were calibrated? If a graduated tape, what is the serial number of the tape and is the tape shorter than its original length (i.e. is any tape missing)?

If water levels are obtained using a transducer and data logger, the serial numbers of both transducer and data logger are needed and a copy of the calibration sheet. The additional information required is the depth the transducer was set and the length of time between when the transducer was installed and when the calibration water level was measured, plus the length of time between the installation of the transducer and the start of the aquifer test. All water levels must be measured at least to the nearest 0.01 metres.

Discharge Measurements

Type of water meter used. This could include such things as a turbine or positive displacement meter. How were the readings obtained from the meter? Were the readings visually noted and recorded or were they recorded using a data logger?

Water Samples

A water sample must be collected between the 4- and 6-minute water-level measurements, whenever there is an observed physical change in the groundwater being pumped, and 10 minutes before the end of the planned pumping interval. Additional water samples must be collected if it is expected that pumping will be terminated before the planned pumping interval.
Water Act - Water (Ministerial) Regulation

ALBERTA REGULATION 205/98
Water Act
WATER (MINISTERIAL) REGULATION

Table of Contents

Interpretation
Part 1 Activities
Approval exemption 2
Approval exemptions subject to Code 3
Notice of section 3 activities 4
Part 2 Diversions and Transfers
Licence exemption 5
Temporary diversions subject to Code 6
Section 6 temporary diversion notices 7
Diversion for household purposes prohibited 8
Subdivisions requiring reports 9
Major river basin boundaries 10
Licence purposes 11
Licence expiry dates 12
Part 3 Notice
Notice of application, decision or order 13
Exemptions from notice requirements 14
Part 4 Access to Information
Disclosure of information 15
Providing of information 16
Extension of time 17
Part 5 Land Compensation Board Procedures
Appeals 18
Notice of appeal 19
Post hearing matters 20
Conduct of a hearing and decision 21
Combining hearings 22
Costs 23
Fees 24
Extension of time 25
Water Act – Flowchart

Application to Alberta Environment (AENV) to undertake a diversion of water

If the proposed diversion is for groundwater, is application for oilfield injection in the "White Area" of Alberta?

Yes

AENV responds to applicant and provides public notice to be advertised

Yes

Advertise public notice

"Statement(s) of Concern" received within a specified (often 7-day) waiting period from "Directly Affected Person"

No

AENV issues approval to undertake an activity or confirms OK to proceed

Yes

Concerns addressed to AENV's satisfaction

No

Concerns addressed to AENV's satisfaction

Yes

Application to Alberta Environment (AENV) to undertake a diversion of water

Application rejected for environmental reasons (e.g., resource fully allocated). Appealable by applicant

Yes

Undertake groundwater prognosis (Submit to AENV for review)

No

Abandon Project (or apply for source other than potable groundwater)

Surface Water Source

Obtain surface water source information as specified by AENV

Groundwater Source

Conduct groundwater exploration; comply with Terms & Conditions of Approval

Submit "Licensing Package" to AENV

"Statement(s) of Concern" received during a specified (often 30-day) waiting period

No

AENV issues approval to undertake an activity or confirms OK to proceed

Yes

Concerns addressed to AENV's satisfaction

No

Concerns addressed to AENV's satisfaction

Yes

Deficiencies addressed by Applicant / Consultant and submitted to AENV

Yes

On-going monitoring and reporting

No

Annual Report (MOW-TECH LTD.)

MOW-TECH LTD.
Your Groundwater Source
1 800 661 6061
© 1999 Mow-Tech Ltd.

This flow chart was developed by Mow-Tech Ltd. and is provided as a guide only to Alberta's new Water Act. Mow-Tech Ltd. accepts no responsibility for the information provided.
Interpretation of Chemical Analysis of Drinking Water

1. **TOTAL DISSOLVED SOLIDS (TDS)** - The recommended limit is 1000 mg/L for untreated and 500 mg/L for treated waters. TDS indicates the approximate organic and inorganic substances in the water. It will be high if other components of the analysis are high.

2. **IRON** - Amounts over 0.3 mg/L, usually stain laundry and plumbing fixtures and cause undesirable tastes. Iron filtration can be utilized. Iron bacteria may also be the cause of increased iron content.

3. **CALCIUM** - This is a constituent of hardness. Excessive calcium in drinking water may be a factor in disorders of the kidneys, bladder and urinary system.

4. **MAGNESIUM** - This is a constituent of hardness.

5. **HARDNESS** - A maximum acceptable concentration has not been established. Hardness is caused mainly by calcium and magnesium. Levels between 80 and 100 mg/L are satisfactory; 100 to 200 mg/L are less acceptable; more than 200 mg/L are considered to be poor and in excess of 500 mg/L are unacceptable for most domestic purposes. Softening can be helpful in given circumstances.

6. **SODIUM** - Ideally, there should be no more than 200 mg/L. The average intake of sodium from water is only a small fraction of that consumed in a normal diet. Persons suffering from hypertension or congestive heart failure may require a sodium-restricted diet, in which case the intake of sodium from drinking water could become significant. Your physician should be informed of the sodium content.

7. **NITRITE-NITROGEN & NITRATE-NITROGEN (NO₂ + NO₃)** - The maximum acceptable concentration is 10 mg/L. Any amount over that may be harmful to children up to 12 months of age, causing a condition known as methaemoglobinaemia. Presence may indicate a contaminating source although other instances, e.g. fertilizer and decomposing vegetation can cause an elevated figure.

8. **NITRITE-NITROGEN** - The maximum acceptable concentration is 1.0 mg/L. Nitrite is unstable in water and converts to nitrate. An elevated figure may indicate a pollution problem.

9. **FLUORIDE** - Approximately 1 mg/L of fluoride is recommended in drinking water in order to give developing teeth some protection against decay. If the fluoride is higher than 1.5 mg/L you should talk to the dental staff of the Health Unit about the possibility of mottled enamel; if the fluoride is lower than 0.7 mg/L please ask about fluoride supplements for your children.

10. **SULPHATES** - The maximum acceptable concentration is 500 mg/L. Taste becomes noticeable between 250 and 600 mg/L and a laxative effect may be noticed by new users when sulphate combines with sodium or magnesium.
11. **CHLORIDE** - The recommended limit is 250 mg/L. Chloride content is usually low and an increase may indicate a nearby source of pollution (particularly if NO2 and NO3 and nitrite are high). Some wells contain naturally occurring chlorides. A salty taste may be evident.

12. **ALKALINITY T (Total)** - Alkalinity below 500 mg/L is generally accepted. Excessive alkalinity may result in incrustations on utensils, service pipes and water heaters.

13. **BICARBONATE** - Upper limit not established. Relates to alkalinity as bicarbonate of sodium, calcium and magnesium.

NOTE: mg/L = milligrams per litre.

The preceding notes and standards are for your guidance only based on an intake of 2 litres of water per day. The figures may be interpreted in a variety of ways and the public health inspector for your area can be contacted for further advice. Telephone: Stony Plain - 963-2206; Spruce Grove - 962-4072; Whitecourt - 778-5555.

For stock water and other agricultural uses the requirements are not necessarily the same as for domestic use. Please consult your District Agriculturalist for that kind of advice.
Additional Information

VIDEOS
Will the Well Go Dry Tomorrow? (Mow-Tech Ltd.: 1-800 GEO WELL)
Water Wells that Last (PFRA – Edmonton Office: 780-495-3307)
Ground Water and the Rural Community (Ontario Ground Water Association)

BOOKLET
Water Wells that Last (PFRA – Edmonton Office: 780-495-3307)

ALBERTA ENVIRONMENT
WATER WELL INSPECTORS
Jennifer McPherson (Edmonton: 780-427-6429)

GEOPHYSICAL INSPECTION SERVICE
Edmonton: 780-427-3932

COMPLAINT INVESTIGATIONS
Blair Stone (Red Deer: 403-340-5310)

UNIVERSITY OF ALBERTA – Department of Earth and Atmospheric Sciences - Hydrogeology
Carl Mendoza (Edmonton: 780-492-2664)

UNIVERSITY OF CALGARY – Department of Geology and Geophysics - Hydrogeology
Larry Bentley (Calgary: 403-220-4512)

FARMERS ADVOCATE
Paul Vasseur (Edmonton: 780-427-2433)

PRAIRIE FARM REHABILITATION ADMINISTRATION
Tony Cowen (Edmonton: 780-495-4911)
Curtis Snell (Vegreville: 780-349-3963)

LOCAL HEALTH DEPARTMENTS
STURGEON COUNTY
Appendix D

Maps and Figures Included as Large Plots

Bedrock Topography... 2
Apparent Yield for Water Wells Completed in Sand and Gravel Aquifer(s).. 3
Total Dissolved Solids in Groundwater from Surficial Deposits .. 4
Apparent Yield for Water Wells Completed in Upper Bedrock Aquifer(s) ... 5
Total Dissolved Solids in Groundwater from Upper Bedrock Aquifer(s) ... 6
Estimated Water Well Use Per Section .. 7
Risk of Groundwater Contamination .. 8
Cross-Section A - A’.. 9
Cross-Section B - B’... 10
Cross-Section C - C’ ... 11
Cross-Section D - D’ ... 12
Sturgeon County, Part of the North Saskatchewan River Basin
Regional Groundwater Assessment – Task 1, Parts of Tp 053 to 058, R 20 to 28, W4M & Tp 054 to 057, R 01, W5M

Apparent Yield for Water Wells Completed in Sand and Gravel Aquifer(s)

Sturgeon County
Apparent Yield for Water Wells Completed in Sand and Gravel Aquifer(s)

<table>
<thead>
<tr>
<th>Kilometre</th>
<th>Groundwater Lower Limit</th>
<th>Groundwater Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Residential (1)</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>Multi Parcel (1)</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>Commercial</td>
<td>max. available</td>
</tr>
<tr>
<td></td>
<td>Light Industrial</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Agricultural (2)</td>
<td>17.1</td>
</tr>
</tbody>
</table>

(1) per household
(2) traditional agricultural use as defined in the Water Act
(3) all non-household groundwater use must be licensed

GROUNDWATER CONSUMPTION
- Residential
- Multi Parcel
- Commercial
- Light Industrial
- Agricultural

Hydrogeological Consultants Ltd., Edmonton, Alberta - 1.800.661.7972 - Project No. 01-110
Total Dissolved Solids in Groundwater from Surficial Deposits

Sturgeon County
Total Dissolved Solids in Groundwater from Upper Bedrock Aquifer(s)

Saturated Surficial Deposits Absent
Buried bedrock valley
Meltwater channel

MAXIMUM LIMIT
TOTAL DISSOLVED SOLIDS
Use mg/L
Residential 500
Livestock 3,000
Irrigation 500 - 3,500
Commercial Depends on Purpose
Industrial Depends on Purpose

from: Canadian Water Quality Guidelines, 1992
Sturgeon County, Part of the North Saskatchewan River Basin

Regional Groundwater Assessment – Task 1, Parts of Tp 053 to 058, R 20 to 28, W4M & Tp 054 to 057, R 01, W5M

Apparent Yield for Water Wells Completed in Upper Bedrock Aquifer(s)

Sturgeon County

Apparent Yield for Water Wells Completed in Upper Bedrock Aquifer(s)

- Dry
- Buried bedrock valley
- Meltwater channel

Groundwater Lower Limit
Upper Limit

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>1.1</td>
<td>3.4</td>
</tr>
<tr>
<td>Multi Parcel</td>
<td>1.1</td>
<td>3.4</td>
</tr>
<tr>
<td>Commercial</td>
<td>max. available</td>
<td>3.4</td>
</tr>
<tr>
<td>Light Industrial</td>
<td>max. available</td>
<td>3.4</td>
</tr>
<tr>
<td>Agricultural</td>
<td>17.1</td>
<td>max. available</td>
</tr>
</tbody>
</table>

(1) per household
(2) traditional agricultural use as defined in the Water Act
(3) all non-household groundwater use must be licensed

hydrogeological consultants ltd, edmonton, alberta - 1.800.661.7972 - project no. 01-110
Total Dissolved Solids in Groundwater from Upper Bedrock Aquifer(s)

Sturgeon County
Total Dissolved Solids in Groundwater from Surficial Deposits

MAXIMUM LIMIT
TOTAL DISSOLVED SOLIDS
Use mg/L

Residential
500

Livestock
3,000

Irrigation
500 - 3,500

Commercial Depends on Purpose

Industrial Depends on Purpose

from: Canadian Water Quality Guidelines, 1992
Sturgeon County, Part of the North Saskatchewan River Basin
Regional Groundwater Assessment – Task 1, Parts of Tp 053 to 058, R 20 to 28, W4M & Tp 054 to 057, R 01, W5M

Estimated Water Well Use Per Section

Sturgeon County
Estimated Water Well Use Per Section

hydrogeological consultants ltd, edmonton, alberta - 1.800.661.7972 - project no. 01-110

Estimated Daily Use Per Section (m³/day)

Licensed Groundwater User
Buried bedrock valley
Meltwater channel
No Licensed Domestic or Stock User

Hydrogeological Consultants Ltd. Edmonton, Alberta - 1-800-661-7972 - Project No. 01-110
Risk of Groundwater Contamination

Sturgeon County
Risk of Groundwater Contamination

Kilometre

Risk

Low
Moderate
High
Very High

Sand or Gravel Present - Groundwater
Surface Top Within One Metre
Contamination
Permeability Of Ground Surface
Risk

Low Yes High
Moderate Yes High
High Yes Very High

Risk of Groundwater Contamination Criteria
Cross-Section A - A'

Sturgeon County
Cross-Section A - A'

A

Sturgeon County

A'

Elevation in Metres A.M.S.L.

Buried Onoway Valley/Sturgeon River Valley

North Saskatchewan River

Buried Beverly Valley

Buried Sturgeon Valley/Sturgeon River Valley

Sturgeon County, Part of the North Saskatchewan River Basin
Regional Groundwater Assessment – Task 1, Parts of Tp 053 to 058, R 20 to 28, W4M & Tp 054 to 057, R 01, W5M
Cross-Section B - B'

Sturgeon County
Cross-Section B - B'

- Middle Horseshoe Canyon Formation
- Bearpaw Oldman Formation
- Bearpaw Birch Lake Member
- Ribstone Creek Member
- Buried Egremont Valley
- Buried Onoway Valley
- Buried Beverly Valley
- Atim Creek
- Sturgeon River
- Town of Morinville
- Town of Morinville
- Burial Beverly Valley
- Burial Onoway Valley
- Burial Eggremont Valley

Elevation in Meters MSL

Surficial Deposits
- Upper Surficial
- Lower Surficial
- Completion Interval
- Base of Groundwater Protection (modified ZUL June 1986)
- Vertical exaggeration x 80

Sturgeon County, Part of the North Saskatchewan River Basin
Regional Groundwater Assessment – Task 1, Parts of Tp 053 to 058, R 20 to 28, W4M & Tp 054 to 057, R 01, W5M

hydrogeological consultants ltd, Edmonton, Alberta - 1.800.661.7972 - Project no. 01-110

Canada
Cross-Section D - D'
STURGEON COUNTY

Appendix E

Water Wells Recommended for Field Verification

and

County-Operated Water Wells
Water Wells Recommended for Field Verification
(details on following pages)

Completion Aquifer
- Bedrock
- Surficial

- Buried bedrock valley
- Meltwater channel
WATER WELLS RECOMMENDED FOR FIELD VERIFICATION

<table>
<thead>
<tr>
<th>Owner</th>
<th>Location</th>
<th>Aquifer Name</th>
<th>Date Water Drilled</th>
<th>Completed Depth</th>
<th>NPWL Feet</th>
<th>UID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abell, Eric</td>
<td>NW 13-056-23 W4M</td>
<td>Oldman</td>
<td>10-Sep-85</td>
<td>45.7</td>
<td>150.0</td>
<td>M35377.057043</td>
</tr>
<tr>
<td>Alberta Environment</td>
<td>05-13-056-25 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>28-Jul-76</td>
<td>48.8</td>
<td>160.0</td>
<td>M35377.077229</td>
</tr>
<tr>
<td>Alberta Environment</td>
<td>12-07-056-23 W4M</td>
<td>Upper Surficial</td>
<td>04-Mar-75</td>
<td>53.6</td>
<td>176.0</td>
<td>M35377.059827</td>
</tr>
<tr>
<td>Alberta Wheat Pool</td>
<td>04-34-055-25 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>24-Sep-80</td>
<td>54.9</td>
<td>180.0</td>
<td>M35377.056606</td>
</tr>
<tr>
<td>Allen Farms</td>
<td>SE 14-056-22 W4M</td>
<td>Oldman</td>
<td>01-Nov-78</td>
<td>21.9</td>
<td>72.0</td>
<td>M35377.055665</td>
</tr>
<tr>
<td>Allison, Gordon</td>
<td>NE 25-057-23 W4M</td>
<td>Oldman</td>
<td>21-Jul-82</td>
<td>42.7</td>
<td>140.0</td>
<td>M35377.059644</td>
</tr>
<tr>
<td>Antoniuk, Robert</td>
<td>SW 30-056-23 W4M</td>
<td>Bearpaw</td>
<td>27-Mar-74</td>
<td>41.2</td>
<td>135.0</td>
<td>M35377.059315</td>
</tr>
<tr>
<td>Baanstick, S.</td>
<td>12-02-056-27 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>01-Oct-61</td>
<td>50.3</td>
<td>165.0</td>
<td>M35377.056535</td>
</tr>
<tr>
<td>Ballachay, Alrin</td>
<td>SE 18-054-26 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>23-Feb-76</td>
<td>50.3</td>
<td>165.0</td>
<td>M35377.050209</td>
</tr>
<tr>
<td>Bamford, B.</td>
<td>NE 33-055-24 W4M</td>
<td>Bearpaw</td>
<td>02-May-78</td>
<td>35.1</td>
<td>115.0</td>
<td>M35377.054608</td>
</tr>
<tr>
<td>Belanger, Ken</td>
<td>NW 24-057-23 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>06-Sep-86</td>
<td>33.5</td>
<td>110.0</td>
<td>M35377.058597</td>
</tr>
<tr>
<td>Berglund, Mel</td>
<td>NW 24-055-26 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>10-May-77</td>
<td>26.5</td>
<td>87.0</td>
<td>M35377.054194</td>
</tr>
<tr>
<td>Bergstreiser, Lloyd</td>
<td>SW 05-055-27 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>11-Nov-87</td>
<td>37.8</td>
<td>124.0</td>
<td>M35377.054531</td>
</tr>
<tr>
<td>Bergstreiser, Norman</td>
<td>SH 06-055-27 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>24-May-74</td>
<td>33.2</td>
<td>109.0</td>
<td>M35377.054546</td>
</tr>
<tr>
<td>Berndt, Hans</td>
<td>NW 24-057-26 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>24-Jun-85</td>
<td>36.6</td>
<td>120.0</td>
<td>M35377.058382</td>
</tr>
<tr>
<td>Bilecki, Peter</td>
<td>SE 02-057-24 W4M</td>
<td>Bearpaw</td>
<td>15-Nov-75</td>
<td>32.0</td>
<td>105.0</td>
<td>M35377.057885</td>
</tr>
<tr>
<td>Blouin, Harvey O.</td>
<td>SW 22-054-26 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>09-Oct-81</td>
<td>61.0</td>
<td>200.0</td>
<td>M35377.050034</td>
</tr>
<tr>
<td>Bodoano, D. B.</td>
<td>NW 33-056-22 W4M</td>
<td>Oldman</td>
<td>17-Jul-75</td>
<td>45.7</td>
<td>150.0</td>
<td>M35377.056296</td>
</tr>
<tr>
<td>Bokenfohr, Herman</td>
<td>11-02-056-24 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>19-Apr-85</td>
<td>43.6</td>
<td>143.0</td>
<td>M35377.049410</td>
</tr>
<tr>
<td>Bokenfohr, Herman</td>
<td>NW 11-056-24 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>04-Sep-85</td>
<td>43.6</td>
<td>143.0</td>
<td>M35377.049738</td>
</tr>
<tr>
<td>Bolle, C.</td>
<td>SE 26-057-26 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>12-Mar-77</td>
<td>22.9</td>
<td>75.0</td>
<td>M35377.059392</td>
</tr>
<tr>
<td>Borle, George</td>
<td>NW 30-054-26 W4M</td>
<td>Lower Surficial</td>
<td>12-Nov-82</td>
<td>19.8</td>
<td>65.0</td>
<td>M35377.059296</td>
</tr>
<tr>
<td>Bosch, Bill</td>
<td>NE 31-055-23 W4M</td>
<td>Lower Surficial</td>
<td>24-Aug-79</td>
<td>53.6</td>
<td>176.0</td>
<td>M35377.054933</td>
</tr>
<tr>
<td>Boulter, Ken</td>
<td>04-07-057-22 W4M</td>
<td>Upper Surficial</td>
<td>20-Jan-81</td>
<td>7.3</td>
<td>24.0</td>
<td>M35377.057619</td>
</tr>
<tr>
<td>Bova, Bernard</td>
<td>NW 24-057-23 W4M</td>
<td>Oldman</td>
<td>04-Mar-83</td>
<td>48.2</td>
<td>158.0</td>
<td>M35377.059536</td>
</tr>
<tr>
<td>Boyd, Glenn</td>
<td>NE 30-056-24 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>27-May-74</td>
<td>39.8</td>
<td>130.0</td>
<td>M35377.057332</td>
</tr>
<tr>
<td>Brennies, Alex</td>
<td>SW 20-055-26 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>01-Dec-71</td>
<td>32.0</td>
<td>105.0</td>
<td>M35377.057154</td>
</tr>
<tr>
<td>Brochu, Dave</td>
<td>NE 24-055-27 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>17-May-78</td>
<td>42.4</td>
<td>139.0</td>
<td>M35377.055116</td>
</tr>
<tr>
<td>Brown, Al</td>
<td>SE 03-055-27 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>23-Jul-79</td>
<td>33.5</td>
<td>110.0</td>
<td>M35377.054482</td>
</tr>
<tr>
<td>Bushard</td>
<td>NW 13-055-27 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>02-Dec-71</td>
<td>42.7</td>
<td>140.0</td>
<td>M35377.054776</td>
</tr>
<tr>
<td>Byer, J.</td>
<td>NW 02-057-27 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>10-Apr-69</td>
<td>36.6</td>
<td>120.0</td>
<td>M35377.058644</td>
</tr>
<tr>
<td>Calahoo Fire Hall</td>
<td>NW 32-054-27 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>18-Oct-85</td>
<td>36.6</td>
<td>120.0</td>
<td>M35377.054047</td>
</tr>
<tr>
<td>Camarta, Ronald</td>
<td>NE 20-055-26 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>06-Jun-81</td>
<td>67.1</td>
<td>220.0</td>
<td>M35377.054979</td>
</tr>
<tr>
<td>Cantin, A.</td>
<td>09-13-054-25 W4M</td>
<td>Bearpaw</td>
<td>10-Sep-81</td>
<td>73.2</td>
<td>240.0</td>
<td>M35377.232053</td>
</tr>
<tr>
<td>Carruthers, D.</td>
<td>04-26-055-24 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>31-Jul-84</td>
<td>30.5</td>
<td>100.0</td>
<td>M35377.054365</td>
</tr>
<tr>
<td>Carruthers, Earl W.</td>
<td>SW 03-056-24 W4M</td>
<td>Bearpaw</td>
<td>02-May-78</td>
<td>33.5</td>
<td>110.0</td>
<td>M35377.063334</td>
</tr>
<tr>
<td>Case, Allan</td>
<td>NW 02-057-27 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>20-Oct-82</td>
<td>39.6</td>
<td>130.0</td>
<td>M35377.058648</td>
</tr>
<tr>
<td>Cassidy, Harold</td>
<td>SW 13-054-26 W4M</td>
<td>Bearpaw</td>
<td>01-May-74</td>
<td>93.3</td>
<td>306.0</td>
<td>M35377.049945</td>
</tr>
<tr>
<td>Chorney, S.</td>
<td>01-27-057-20 W4M</td>
<td>Birch Lake</td>
<td>51.8</td>
<td>170.0</td>
<td>44.2</td>
<td>M35377.057218</td>
</tr>
<tr>
<td>Cissell, Glen</td>
<td>NW 01-057-22 W4M</td>
<td>Oldman</td>
<td>04-Oct-73</td>
<td>45.7</td>
<td>150.0</td>
<td>M35377.057538</td>
</tr>
<tr>
<td>Clark, Brian</td>
<td>13-12-056-25 W4M</td>
<td>Bearpaw</td>
<td>18-Oct-82</td>
<td>43.3</td>
<td>142.0</td>
<td>M35377.054658</td>
</tr>
<tr>
<td>Con West Structures</td>
<td>08-13-054-1 W5M</td>
<td>Upper Horseshoe Canyon</td>
<td>11-Jun-84</td>
<td>36.3</td>
<td>119.0</td>
<td>M35379.043914</td>
</tr>
<tr>
<td>Control Land Survey</td>
<td>SE 23-055-24 W4M</td>
<td>Lower Surficial</td>
<td>21-Jun-78</td>
<td>51.8</td>
<td>170.0</td>
<td>M35377.053896</td>
</tr>
<tr>
<td>Owner</td>
<td>Location</td>
<td>Aquifer Name</td>
<td>Date Water Well Drilled</td>
<td>Completed Depth</td>
<td>NPWL</td>
<td>UID</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>----------------------------</td>
<td>------------------------</td>
<td>----------------</td>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td>Courigan, D</td>
<td>12-19-057-25 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>12-Jun-78</td>
<td>31.1</td>
<td>102.0</td>
<td>14.9 49.0</td>
</tr>
<tr>
<td>Cowen, Robert</td>
<td>SE 23-057-21 W4M</td>
<td>Oldman</td>
<td>17-Dec-80</td>
<td>21.9</td>
<td>72.0</td>
<td>1.8 6.0</td>
</tr>
<tr>
<td>Craig, Robert & Nadia</td>
<td>02-26-057-24 W4M</td>
<td>Upper Surficial</td>
<td>24-Aug-82</td>
<td>28.0</td>
<td>92.0</td>
<td>16.2 53.0</td>
</tr>
<tr>
<td>Crawford, W. G</td>
<td>09-26-057-20 W4M</td>
<td>Upper Surficial</td>
<td>22-Apr-83</td>
<td>6.1</td>
<td>20.0</td>
<td>4.6 15.0</td>
</tr>
<tr>
<td>Cuthbert, Sterling & Elbert</td>
<td>SE 10-057-21 W4M</td>
<td>Birch Lake</td>
<td>22-Aug-82</td>
<td>54.9</td>
<td>180.0</td>
<td>11.0 36.0</td>
</tr>
<tr>
<td>Cyr, G</td>
<td>SE 36-057-25 W4M</td>
<td>Bearpaw</td>
<td>8-Jun-85</td>
<td>18.3</td>
<td>60.0</td>
<td>5.8 19.0</td>
</tr>
<tr>
<td>Dalgziel, J</td>
<td>06-23-055-24 W4M</td>
<td>Lower Surficial</td>
<td>11-Jun-80</td>
<td>82.9</td>
<td>272.0</td>
<td>2.2 8.0</td>
</tr>
<tr>
<td>Danke, W. G</td>
<td>09-26-057-20 W4M</td>
<td>Upper Surficial</td>
<td>22-Apr-83</td>
<td>6.1</td>
<td>20.0</td>
<td>4.6 15.0</td>
</tr>
<tr>
<td>Cuthbent, Sterling & Ebert</td>
<td>SE 10-057-21 W4M</td>
<td>Birch Lake</td>
<td>22-Aug-82</td>
<td>54.9</td>
<td>180.0</td>
<td>11.0 36.0</td>
</tr>
<tr>
<td>Cowen, Robert</td>
<td>SE 23-057-21 W4M</td>
<td>Oldman</td>
<td>17-Dec-80</td>
<td>21.9</td>
<td>72.0</td>
<td>1.8 6.0</td>
</tr>
<tr>
<td>Craig, Robert & Nadia</td>
<td>02-26-057-24 W4M</td>
<td>Upper Surficial</td>
<td>24-Aug-82</td>
<td>28.0</td>
<td>92.0</td>
<td>16.2 53.0</td>
</tr>
<tr>
<td>Crawford, W. G</td>
<td>09-26-057-20 W4M</td>
<td>Upper Surficial</td>
<td>22-Apr-83</td>
<td>6.1</td>
<td>20.0</td>
<td>4.6 15.0</td>
</tr>
<tr>
<td>Cuthbert, Sterling & Elbert</td>
<td>SE 10-057-21 W4M</td>
<td>Birch Lake</td>
<td>22-Aug-82</td>
<td>54.9</td>
<td>180.0</td>
<td>11.0 36.0</td>
</tr>
<tr>
<td>Cowen, Robert</td>
<td>SE 23-057-21 W4M</td>
<td>Oldman</td>
<td>17-Dec-80</td>
<td>21.9</td>
<td>72.0</td>
<td>1.8 6.0</td>
</tr>
<tr>
<td>Craig, Robert & Nadia</td>
<td>02-26-057-24 W4M</td>
<td>Upper Surficial</td>
<td>24-Aug-82</td>
<td>28.0</td>
<td>92.0</td>
<td>16.2 53.0</td>
</tr>
<tr>
<td>Crawford, W. G</td>
<td>09-26-057-20 W4M</td>
<td>Upper Surficial</td>
<td>22-Apr-83</td>
<td>6.1</td>
<td>20.0</td>
<td>4.6 15.0</td>
</tr>
</tbody>
</table>
WATER WELLS RECOMMENDED FOR FIELD VERIFICATION

<table>
<thead>
<tr>
<th>Owner</th>
<th>Location</th>
<th>Aquifer Name</th>
<th>Date Water Well Drilled</th>
<th>Completed Depth</th>
<th>NPWL Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goulet, Jim</td>
<td>NW 36-054-28 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>7-Oct-87</td>
<td>38.1</td>
<td>125.0</td>
</tr>
<tr>
<td>Granger, Dwayne</td>
<td>SE 20-056-26 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>4-Apr-84</td>
<td>45.7</td>
<td>150.0</td>
</tr>
<tr>
<td>Gravelle, Bob</td>
<td>SE 24-054-25 W4M</td>
<td>Bearpaw</td>
<td>1-Jul-70</td>
<td>62.5</td>
<td>205.0</td>
</tr>
<tr>
<td>Gravelle, Robert</td>
<td>SW 11-057-36 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>16-May-80</td>
<td>70.1</td>
<td>230.0</td>
</tr>
<tr>
<td>Hackman, J.</td>
<td>06-23-055-24 W4M</td>
<td>Lower Surficial</td>
<td>20-May-76</td>
<td>47.6</td>
<td>156.0</td>
</tr>
<tr>
<td>Hall, Marshall</td>
<td>NE 17-056-22 W4M</td>
<td>Oldman</td>
<td>15-Jun-88</td>
<td>42.7</td>
<td>140.0</td>
</tr>
<tr>
<td>Halun, M.</td>
<td>SE 34-057-21 W4M</td>
<td>Upper Surficial</td>
<td>23-Aug-79</td>
<td>26.8</td>
<td>88.0</td>
</tr>
<tr>
<td>Hartmetz, Oliver</td>
<td>16-21-054-26 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>18-Apr-80</td>
<td>39.3</td>
<td>129.0</td>
</tr>
<tr>
<td>Hawrelko, Josephine</td>
<td>10-32-057-22 W4M</td>
<td>Upper Surficial</td>
<td>30-Mar-78</td>
<td>4.9</td>
<td>16.0</td>
</tr>
<tr>
<td>Heitel, Herman</td>
<td>SE 25-057-23 W4M</td>
<td>Oldman</td>
<td>2-Nov-83</td>
<td>30.5</td>
<td>100.0</td>
</tr>
<tr>
<td>Hengen, Lee</td>
<td>NE 34-058-27 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>9-Mar-99</td>
<td>42.7</td>
<td>140.0</td>
</tr>
<tr>
<td>Hewitt Estates</td>
<td>SE 06-056-23 W4M</td>
<td>Upper Surficial</td>
<td>25-Feb-76</td>
<td>47.6</td>
<td>156.0</td>
</tr>
<tr>
<td>Hewitt, M. R.</td>
<td>04-06-056-23 W4M</td>
<td>Upper Surficial</td>
<td>3-Apr-64</td>
<td>39.6</td>
<td>130.0</td>
</tr>
<tr>
<td>Hicks, Terry</td>
<td>SE 21-057-21 W4M</td>
<td>Birch Lake</td>
<td>6-Mar-79</td>
<td>61.0</td>
<td>200.0</td>
</tr>
<tr>
<td>Hodgins, Buford</td>
<td>01-34-056-24 W4M</td>
<td>Bearpaw</td>
<td>22-Feb-83</td>
<td>67.1</td>
<td>220.0</td>
</tr>
<tr>
<td>Hofs, Henry</td>
<td>SE 18-056-22 W4M</td>
<td>Oldman</td>
<td>27-Nov-73</td>
<td>61.0</td>
<td>200.0</td>
</tr>
<tr>
<td>Holden, Ed</td>
<td>SW 18-054-25 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>11-Oct-78</td>
<td>42.7</td>
<td>140.0</td>
</tr>
<tr>
<td>Huiillery, Randy</td>
<td>SW 24-057-21 W4M</td>
<td>Birch Lake</td>
<td>13-May-81</td>
<td>48.8</td>
<td>160.0</td>
</tr>
<tr>
<td>Hurne, B.</td>
<td>SW 09-056-23 W4M</td>
<td>Lower Surficial</td>
<td>28-Jun-71</td>
<td>44.5</td>
<td>146.0</td>
</tr>
<tr>
<td>Jeffery, J.</td>
<td>13-12-055-24 W4M</td>
<td>Bearpaw</td>
<td>16-Sep-82</td>
<td>51.8</td>
<td>170.0</td>
</tr>
<tr>
<td>Jodoin, Albert</td>
<td>NE 13-057-24 W4M</td>
<td>Bearpaw</td>
<td>5-Aug-81</td>
<td>24.4</td>
<td>80.0</td>
</tr>
<tr>
<td>Kapach, L</td>
<td>03-23-055-24 W4M</td>
<td>Bearpaw</td>
<td>22-Jan-76</td>
<td>77.4</td>
<td>254.0</td>
</tr>
<tr>
<td>Kaup, Henry</td>
<td>SW 36-055-27 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>18-Mar-82</td>
<td>44.2</td>
<td>145.0</td>
</tr>
<tr>
<td>Kelly, Don</td>
<td>01-28-054-26 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>22-Jul-75</td>
<td>54.9</td>
<td>180.0</td>
</tr>
<tr>
<td>Kemper, T.</td>
<td>12-02-057-25 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>10-Sep-75</td>
<td>33.5</td>
<td>110.0</td>
</tr>
<tr>
<td>Ken Payne Homes</td>
<td>SE 02-054-26 W4M</td>
<td>Lower Surficial</td>
<td>16-Jan-86</td>
<td>25.9</td>
<td>85.0</td>
</tr>
<tr>
<td>Kennedy, R.</td>
<td>SE 23-055-24 W4M</td>
<td>Lower Surficial</td>
<td>11-Mar-86</td>
<td>59.4</td>
<td>195.0</td>
</tr>
<tr>
<td>Kennett, Norman</td>
<td>NW 28-056-27 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>8-Jun-76</td>
<td>48.8</td>
<td>160.0</td>
</tr>
<tr>
<td>Keylor, J.</td>
<td>01-13-056-25 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>15-Jun-76</td>
<td>44.2</td>
<td>145.0</td>
</tr>
<tr>
<td>Kiefenheld, Perry & Harvey</td>
<td>SE 29-055-26 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>22-Apr-67</td>
<td>61.0</td>
<td>200.0</td>
</tr>
<tr>
<td>Kieser, Kevin</td>
<td>NE 14-056-25 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>29-Sep-83</td>
<td>21.0</td>
<td>69.0</td>
</tr>
<tr>
<td>Kieser, Robert</td>
<td>NE 26-056-26 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>29-Jun-76</td>
<td>18.3</td>
<td>60.0</td>
</tr>
<tr>
<td>King, R.</td>
<td>NW 14-054-26 W4M</td>
<td>Bearpaw</td>
<td>22-Feb-74</td>
<td>88.4</td>
<td>290.0</td>
</tr>
<tr>
<td>Klassen, A. & Frank</td>
<td>08-36-057-24 W4M</td>
<td>Oldman</td>
<td>8-Jun-81</td>
<td>25.0</td>
<td>82.0</td>
</tr>
<tr>
<td>Klassen, Jim</td>
<td>NW 25-056-22 W4M</td>
<td>Oldman</td>
<td>22-Aug-75</td>
<td>45.7</td>
<td>150.0</td>
</tr>
<tr>
<td>Klein, F</td>
<td>SW 23-056-25 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>30-May-74</td>
<td>54.9</td>
<td>180.0</td>
</tr>
<tr>
<td>Kluthe, H.</td>
<td>05-30-055-24 W4M</td>
<td>Bearpaw</td>
<td>26-May-83</td>
<td>57.9</td>
<td>190.0</td>
</tr>
<tr>
<td>Kluthe, Norman</td>
<td>13-34-056-24 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>1-Jun-83</td>
<td>45.7</td>
<td>150.0</td>
</tr>
<tr>
<td>Koch, Otto</td>
<td>NW 34-054-27 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>12-Nov-78</td>
<td>29.3</td>
<td>96.0</td>
</tr>
<tr>
<td>Kozenetsaff, Bill</td>
<td>SW 22-057-23 W4M</td>
<td>Upper Surficial</td>
<td>12-Jul-85</td>
<td>12.2</td>
<td>40.0</td>
</tr>
<tr>
<td>Kraicic, George</td>
<td>SW 09-056-23 W4M</td>
<td>Lower Surficial</td>
<td>15-May-78</td>
<td>43.0</td>
<td>141.0</td>
</tr>
<tr>
<td>Kremer, Ray</td>
<td>04-15-054-26 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>7-May-80</td>
<td>36.6</td>
<td>120.0</td>
</tr>
<tr>
<td>Kreway, John</td>
<td>16-18-056-24 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>3-Oct-82</td>
<td>51.8</td>
<td>170.0</td>
</tr>
<tr>
<td>Krupa, Eugene</td>
<td>NE 28-057-24 W4M</td>
<td>Bearpaw</td>
<td>7-Dec-81</td>
<td>80.8</td>
<td>265.0</td>
</tr>
<tr>
<td>Krupa, John</td>
<td>SE 31-054-27 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>4-Apr-77</td>
<td>36.6</td>
<td>120.0</td>
</tr>
</tbody>
</table>
WATER WELLS RECOMMENDED FOR FIELD VERIFICATION

<table>
<thead>
<tr>
<th>Owner</th>
<th>Location</th>
<th>Aquifer Name</th>
<th>Date Water Well Drilled</th>
<th>Completed Depth</th>
<th>NPWL Depth</th>
<th>UID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kuiper, A. & D.</td>
<td>NW 01-22-056-21 W4M</td>
<td>Upper Surficial</td>
<td>1-May-77</td>
<td>18.9</td>
<td>180.0</td>
<td>8.2</td>
</tr>
<tr>
<td>Kuzyk, B.</td>
<td>NW 02-23-056-24 W4M</td>
<td>Upper Surficial</td>
<td>1-Apr-77</td>
<td>24.4</td>
<td>75.0</td>
<td>15.2</td>
</tr>
<tr>
<td>Lakeside Dairy Ltd.</td>
<td>NW 14-057-24 W4M</td>
<td>Bearpaw</td>
<td>19-May-81</td>
<td>30.5</td>
<td>170.0</td>
<td>10.7</td>
</tr>
<tr>
<td>Lakeside Dairy Ltd.</td>
<td>NW 14-057-24 W4M</td>
<td>Bearpaw</td>
<td>19-Nov-81</td>
<td>38.1</td>
<td>63.0</td>
<td>7.6</td>
</tr>
<tr>
<td>Lamoureaux, J.</td>
<td>SE 05-053-22 W4M</td>
<td>Lower Surficial</td>
<td>14-Sep-82</td>
<td>11.3</td>
<td>117.0</td>
<td>6.4</td>
</tr>
<tr>
<td>Larsen, Peter</td>
<td>SE 04-056-22 W4M</td>
<td>Oldman</td>
<td>12-Aug-85</td>
<td>45.7</td>
<td>110.0</td>
<td>14.9</td>
</tr>
<tr>
<td>Leclair, Douglas</td>
<td>SW 25-054-01 W5M</td>
<td>Lower Horseshoe Canyon</td>
<td>6-Oct-82</td>
<td>67.1</td>
<td>88.0</td>
<td>16.8</td>
</tr>
<tr>
<td>Leitz, B.</td>
<td>SE 04-057-26 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>16-May-78</td>
<td>38.1</td>
<td>65.0</td>
<td>6.1</td>
</tr>
<tr>
<td>Le modele, Don</td>
<td>NW 12-22-056-24 W4M</td>
<td>Lower Surficial</td>
<td>6-Oct-83</td>
<td>23.8</td>
<td>155.0</td>
<td>7.3</td>
</tr>
<tr>
<td>Litwin, Terry</td>
<td>NE 26-056-23 W4M</td>
<td>Oldman</td>
<td>30-Nov-81</td>
<td>70.1</td>
<td>160.0</td>
<td>48.8</td>
</tr>
<tr>
<td>Lorenson, L.</td>
<td>13-18-054-24 W4M</td>
<td>Bearpaw</td>
<td>17-May-73</td>
<td>79.2</td>
<td>170.0</td>
<td>29.9</td>
</tr>
<tr>
<td>Lozniack, W.</td>
<td>SW 23-055-24 W4M</td>
<td>Lower Surficial</td>
<td>22-Jul-77</td>
<td>75.0</td>
<td>180.0</td>
<td>55.5</td>
</tr>
<tr>
<td>Lema, Don</td>
<td>NW 11-22-056-24 W4M</td>
<td>Lower Surficial</td>
<td>28-Sep-81</td>
<td>33.5</td>
<td>160.0</td>
<td>6.1</td>
</tr>
<tr>
<td>Lamoureux, J.</td>
<td>SE 05-055-22 W4M</td>
<td>Lower Surficial</td>
<td>14-Sep-82</td>
<td>11.3</td>
<td>117.0</td>
<td>6.4</td>
</tr>
<tr>
<td>Larsen, Peter</td>
<td>SE 04-056-22 W4M</td>
<td>Oldman</td>
<td>12-Aug-85</td>
<td>45.7</td>
<td>110.0</td>
<td>14.9</td>
</tr>
<tr>
<td>Leclair, Douglas</td>
<td>SW 25-054-01 W5M</td>
<td>Lower Horseshoe Canyon</td>
<td>6-Oct-82</td>
<td>67.1</td>
<td>88.0</td>
<td>16.8</td>
</tr>
<tr>
<td>Leitz, B.</td>
<td>SE 04-057-26 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>16-May-78</td>
<td>38.1</td>
<td>65.0</td>
<td>6.1</td>
</tr>
<tr>
<td>Lemmens, Bud</td>
<td>NW 12-22-056-24 W4M</td>
<td>Lower Surficial</td>
<td>6-Jul-77</td>
<td>11.3</td>
<td>117.0</td>
<td>6.4</td>
</tr>
<tr>
<td>Litwin, Terry</td>
<td>NE 26-056-23 W4M</td>
<td>Oldman</td>
<td>30-Nov-81</td>
<td>70.1</td>
<td>160.0</td>
<td>48.8</td>
</tr>
<tr>
<td>Lorenson, L.</td>
<td>13-18-054-24 W4M</td>
<td>Bearpaw</td>
<td>17-May-73</td>
<td>79.2</td>
<td>170.0</td>
<td>29.9</td>
</tr>
<tr>
<td>Lozniack, W.</td>
<td>SW 23-055-24 W4M</td>
<td>Lower Surficial</td>
<td>22-Jul-77</td>
<td>75.0</td>
<td>180.0</td>
<td>55.5</td>
</tr>
<tr>
<td>Lema, Don</td>
<td>NW 12-22-056-24 W4M</td>
<td>Lower Surficial</td>
<td>6-Jul-77</td>
<td>11.3</td>
<td>117.0</td>
<td>6.4</td>
</tr>
<tr>
<td>Litwin, Terry</td>
<td>NE 26-056-23 W4M</td>
<td>Oldman</td>
<td>30-Nov-81</td>
<td>70.1</td>
<td>160.0</td>
<td>48.8</td>
</tr>
<tr>
<td>Owner</td>
<td>Location</td>
<td>Aquifer</td>
<td>Date Water Drilled</td>
<td>Completed Depth</td>
<td>NPWL</td>
<td>UID</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>---------</td>
<td>--------------------</td>
<td>-----------------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>P & P Finishing & Carpentry</td>
<td>SW 24-054-25 W4M</td>
<td>Upper Surficial</td>
<td>11-Jul-75</td>
<td>24.1</td>
<td>105.0</td>
<td>15.2</td>
</tr>
<tr>
<td>Paquette, E. & A.</td>
<td>SW 17-055-27 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>5-Nov-82</td>
<td>35.1</td>
<td>135.0</td>
<td>19.8</td>
</tr>
<tr>
<td>Park, Bob</td>
<td>NW 12-057-24 W4M</td>
<td>Bearpaw</td>
<td>1-Apr-74</td>
<td>36.6</td>
<td>142.0</td>
<td>26.2</td>
</tr>
<tr>
<td>Pasay, Dan</td>
<td>SW 14-055-25 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>14-Jun-77</td>
<td>33.5</td>
<td>162.0</td>
<td>5.5</td>
</tr>
<tr>
<td>Patrick, Ed</td>
<td>12-30-057-24 W4M</td>
<td>Lower Surficial</td>
<td>22-Dec-84</td>
<td>73.2</td>
<td>220.0</td>
<td>18.9</td>
</tr>
<tr>
<td>Pauline, R F</td>
<td>NE 33-056-25 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>6-May-80</td>
<td>46.0</td>
<td>168.0</td>
<td>11.0</td>
</tr>
<tr>
<td>Pelletier, Omer</td>
<td>NW 12-058-25 W4M</td>
<td>Oldman</td>
<td>29-May-84</td>
<td>73.2</td>
<td>220.0</td>
<td>18.9</td>
</tr>
<tr>
<td>Pelletier, Paul</td>
<td>NW 10-057-25 W4M</td>
<td>Oldman</td>
<td>24-Apr-74</td>
<td>36.6</td>
<td>85.0</td>
<td>10.7</td>
</tr>
<tr>
<td>Perdue, Pat</td>
<td>04-30-057-25 W4M</td>
<td>Oldman</td>
<td>24-Apr-74</td>
<td>36.6</td>
<td>85.0</td>
<td>10.7</td>
</tr>
<tr>
<td>Paquette, E. & A.</td>
<td>SW 17-055-27 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>5-Nov-82</td>
<td>35.1</td>
<td>135.0</td>
<td>19.8</td>
</tr>
<tr>
<td>Pelletier, Paul</td>
<td>NW 12-058-25 W4M</td>
<td>Oldman</td>
<td>29-May-84</td>
<td>73.2</td>
<td>220.0</td>
<td>18.9</td>
</tr>
<tr>
<td>Perdue, Pat</td>
<td>04-30-057-25 W4M</td>
<td>Oldman</td>
<td>24-Apr-74</td>
<td>36.6</td>
<td>85.0</td>
<td>10.7</td>
</tr>
<tr>
<td>Pelletier, Paul</td>
<td>NW 12-058-25 W4M</td>
<td>Oldman</td>
<td>29-May-84</td>
<td>73.2</td>
<td>220.0</td>
<td>18.9</td>
</tr>
</tbody>
</table>

WATER WELLS RECOMMENDED FOR FIELD VERIFICATION

<table>
<thead>
<tr>
<th>Owner</th>
<th>Location</th>
<th>Aquifer</th>
<th>Date Water Drilled</th>
<th>Completed Depth</th>
<th>NPWL</th>
<th>UID</th>
</tr>
</thead>
<tbody>
<tr>
<td>P & P Finishing & Carpentry</td>
<td>SW 24-054-25 W4M</td>
<td>Upper Surficial</td>
<td>11-Jul-75</td>
<td>24.1</td>
<td>105.0</td>
<td>15.2</td>
</tr>
<tr>
<td>Paquette, E. & A.</td>
<td>SW 17-055-27 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>5-Nov-82</td>
<td>35.1</td>
<td>135.0</td>
<td>19.8</td>
</tr>
<tr>
<td>Park, Bob</td>
<td>NW 12-057-24 W4M</td>
<td>Bearpaw</td>
<td>1-Apr-74</td>
<td>36.6</td>
<td>142.0</td>
<td>26.2</td>
</tr>
<tr>
<td>Pasay, Dan</td>
<td>SW 14-055-25 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>14-Jun-77</td>
<td>33.5</td>
<td>162.0</td>
<td>5.5</td>
</tr>
<tr>
<td>Patrick, Ed</td>
<td>12-30-057-24 W4M</td>
<td>Lower Surficial</td>
<td>22-Dec-84</td>
<td>73.2</td>
<td>220.0</td>
<td>18.9</td>
</tr>
<tr>
<td>Pauline, R F</td>
<td>NE 33-056-25 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>6-May-80</td>
<td>46.0</td>
<td>168.0</td>
<td>11.0</td>
</tr>
<tr>
<td>Pelletier, Omer</td>
<td>NW 12-058-25 W4M</td>
<td>Oldman</td>
<td>29-May-84</td>
<td>73.2</td>
<td>220.0</td>
<td>18.9</td>
</tr>
<tr>
<td>Pelletier, Paul</td>
<td>NW 10-057-25 W4M</td>
<td>Oldman</td>
<td>24-Apr-74</td>
<td>36.6</td>
<td>85.0</td>
<td>10.7</td>
</tr>
<tr>
<td>Perdue, Pat</td>
<td>04-30-057-25 W4M</td>
<td>Oldman</td>
<td>24-Apr-74</td>
<td>36.6</td>
<td>85.0</td>
<td>10.7</td>
</tr>
<tr>
<td>Paquette, E. & A.</td>
<td>SW 17-055-27 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>5-Nov-82</td>
<td>35.1</td>
<td>135.0</td>
<td>19.8</td>
</tr>
<tr>
<td>Pelletier, Paul</td>
<td>NW 12-058-25 W4M</td>
<td>Oldman</td>
<td>29-May-84</td>
<td>73.2</td>
<td>220.0</td>
<td>18.9</td>
</tr>
<tr>
<td>Perdue, Pat</td>
<td>04-30-057-25 W4M</td>
<td>Oldman</td>
<td>24-Apr-74</td>
<td>36.6</td>
<td>85.0</td>
<td>10.7</td>
</tr>
<tr>
<td>Pelletier, Paul</td>
<td>NW 12-058-25 W4M</td>
<td>Oldman</td>
<td>29-May-84</td>
<td>73.2</td>
<td>220.0</td>
<td>18.9</td>
</tr>
</tbody>
</table>
WATER WELLS RECOMMENDED FOR FIELD VERIFICATION

<table>
<thead>
<tr>
<th>Owner</th>
<th>Location</th>
<th>Aquifer Name</th>
<th>Date Water Drilled</th>
<th>Completed Depth Metres</th>
<th>NPWL Metres</th>
<th>UID</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. Llery, Bill</td>
<td>NE 24-054-27 W4M</td>
<td>Lower Surficial</td>
<td>6-Jun-83</td>
<td>17.7</td>
<td>148.0</td>
<td>M35377.050734</td>
</tr>
<tr>
<td>St. Pierre, M.</td>
<td>SW 23-055-24 W4M</td>
<td>Lower Surficial</td>
<td>23-Jul-73</td>
<td>34.8</td>
<td>229.0</td>
<td>M35377.054013</td>
</tr>
<tr>
<td>Stamper, Fred</td>
<td>SE 17-056-26 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>12-Jun-84</td>
<td>32.0</td>
<td>620.0</td>
<td>M35377.057005</td>
</tr>
<tr>
<td>Stevenson, Mike</td>
<td>14-26-053-26 W4M</td>
<td>Lower Surficial</td>
<td>8-Sep-77</td>
<td>20.7</td>
<td>100.0</td>
<td>M36234.944685</td>
</tr>
<tr>
<td>Strawson, Irwin</td>
<td>03-13-056-24 W4M</td>
<td>Upper Surficial</td>
<td>20-Jun-78</td>
<td>29.3</td>
<td>85.0</td>
<td>M35377.056600</td>
</tr>
<tr>
<td>Street, N.</td>
<td>SW 23-055-24 W4M</td>
<td>Bearpaw</td>
<td>19-Apr-78</td>
<td>78.3</td>
<td>120.0</td>
<td>M35377.054099</td>
</tr>
<tr>
<td>Tailleur, Richard</td>
<td>NE 31-055-29 W4M</td>
<td>Bearpaw</td>
<td>15-Dec-77</td>
<td>54.3</td>
<td>20.0</td>
<td>M35377.054907</td>
</tr>
<tr>
<td>Theres, Lenard</td>
<td>NE 20-056-26 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>2-Jun-86</td>
<td>46.3</td>
<td>210.0</td>
<td>M35377.057208</td>
</tr>
<tr>
<td>Thomas, R.</td>
<td>13-33-057-22 W4M</td>
<td>Upper Surficial</td>
<td>19-Sep-78</td>
<td>2.4</td>
<td>100.0</td>
<td>M35377.059082</td>
</tr>
<tr>
<td>Town of Bon Accord</td>
<td>01-13-056-24 W4M</td>
<td>Upper Surficial</td>
<td>15-Oct-64</td>
<td>30.2</td>
<td>180.0</td>
<td>M35377.063412</td>
</tr>
<tr>
<td>Turgeon, E.</td>
<td>04-19-055-25 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>15-Apr-77</td>
<td>41.2</td>
<td>131.0</td>
<td>M35377.055053</td>
</tr>
<tr>
<td>Underschultz, Bill</td>
<td>08-12-054-26 W4M</td>
<td>Lower Surficial</td>
<td>23-Oct-79</td>
<td>47.2</td>
<td>154.0</td>
<td>M35377.049914</td>
</tr>
<tr>
<td>Van Tighem, John</td>
<td>NE 14-055-27 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>20-Mar-74</td>
<td>51.8</td>
<td>168.0</td>
<td>M35377.054871</td>
</tr>
<tr>
<td>Vandam, Will</td>
<td>SW 21-056-25 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>16-Nov-83</td>
<td>14.9</td>
<td>48.0</td>
<td>M35377.055037</td>
</tr>
<tr>
<td>Verbeek, J. & Sons</td>
<td>NW 33-054-27 W4M</td>
<td>Lower Surficial</td>
<td>16-Oct-82</td>
<td>23.2</td>
<td>75.0</td>
<td>M35377.054069</td>
</tr>
<tr>
<td>Verbeek, L.</td>
<td>SW 22-056-27 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>4-Dec-67</td>
<td>32.0</td>
<td>105.0</td>
<td>M35377.055863</td>
</tr>
<tr>
<td>Verbeek, L. & Kockling, A.</td>
<td>NE 21-055-27 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>30-Nov-67</td>
<td>30.5</td>
<td>100.0</td>
<td>M35377.055859</td>
</tr>
<tr>
<td>Veroba, B.</td>
<td>SW 24-054-25 W4M</td>
<td>Bearpaw</td>
<td>30-May-73</td>
<td>70.1</td>
<td>230.0</td>
<td>M35377.049825</td>
</tr>
<tr>
<td>Victor, Charles</td>
<td>SE 30-053-26 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>23-Oct-75</td>
<td>19.8</td>
<td>65.0</td>
<td>M35377.044737</td>
</tr>
<tr>
<td>Vranas, Harvey</td>
<td>01-21-055-25 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>10-Jun-85</td>
<td>30.5</td>
<td>100.0</td>
<td>M35377.055132</td>
</tr>
<tr>
<td>W. J. Franci And Assoc</td>
<td>09-23-054-25 W4M</td>
<td>Bearpaw</td>
<td>27-Feb-75</td>
<td>68.0</td>
<td>220.0</td>
<td>M36239.965114</td>
</tr>
<tr>
<td>Walker</td>
<td>NW 06-055-24 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>28-Jul-75</td>
<td>38.1</td>
<td>125.0</td>
<td>M35377.050376</td>
</tr>
<tr>
<td>Watson, Jerry</td>
<td>NW 14-056-26 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>29-May-86</td>
<td>49.4</td>
<td>165.0</td>
<td>M35377.056929</td>
</tr>
<tr>
<td>Watt, Allan</td>
<td>NW 32-056-22 W4M</td>
<td>Oldman</td>
<td>20-Jul-80</td>
<td>42.1</td>
<td>138.0</td>
<td>M35377.056289</td>
</tr>
<tr>
<td>Wattie, Rick</td>
<td>SW 29-054-27 W4M</td>
<td>Lower Surficial</td>
<td>28-Sep-84</td>
<td>23.8</td>
<td>78.0</td>
<td>M35377.050846</td>
</tr>
<tr>
<td>Weiss, Donald</td>
<td>16-22-055-25 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>7-Oct-83</td>
<td>9.8</td>
<td>32.0</td>
<td>M35377.055032</td>
</tr>
<tr>
<td>Williams, Martin</td>
<td>SW 20-054-27 W4M</td>
<td>Lower Surficial</td>
<td>30-Oct-87</td>
<td>30.5</td>
<td>100.0</td>
<td>M35377.050661</td>
</tr>
<tr>
<td>Willis Realty</td>
<td>11-23-055-24 W4M</td>
<td>Lower Surficial</td>
<td>26-Jun-75</td>
<td>74.7</td>
<td>246.0</td>
<td>M35377.054264</td>
</tr>
<tr>
<td>Wilson, Garth</td>
<td>NW 20-054-27 W4M</td>
<td>Lower Surficial</td>
<td>26-Apr-77</td>
<td>15.9</td>
<td>51.0</td>
<td>M35377.055704</td>
</tr>
<tr>
<td>Wolanski, W.</td>
<td>SW 34-056-21 W4M</td>
<td>Oldman</td>
<td>30-Mar-74</td>
<td>28.0</td>
<td>92.0</td>
<td>M35377.055991</td>
</tr>
<tr>
<td>Wolansky, W.</td>
<td>04-34-056-21 W4M</td>
<td>Upper Surficial</td>
<td>12-Jun-86</td>
<td>15.2</td>
<td>50.0</td>
<td>M35377.055970</td>
</tr>
<tr>
<td>Workun, Rocky</td>
<td>08-19-057-22 W4M</td>
<td>Upper Surficial</td>
<td>21-May-81</td>
<td>3.7</td>
<td>12.0</td>
<td>M35377.058043</td>
</tr>
<tr>
<td>Wozniak, J</td>
<td>01-24-056-25 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>3-Oct-72</td>
<td>45.7</td>
<td>150.0</td>
<td>M35377.057270</td>
</tr>
<tr>
<td>Yaremko, Bob</td>
<td>NE 36-054-27 W4M</td>
<td>Lower Surficial</td>
<td>24-May-88</td>
<td>12.2</td>
<td>39.0</td>
<td>M35377.054192</td>
</tr>
<tr>
<td>Zemlak, Clarence</td>
<td>NE 31-055-23 W4M</td>
<td>Lower Surficial</td>
<td>12-Jun-79</td>
<td>58.9</td>
<td>190.0</td>
<td>M35377.054911</td>
</tr>
<tr>
<td>Ziegler, Robert</td>
<td>NW 13-055-01 W5M</td>
<td>Lower Horseshoe Canyon</td>
<td>22-Aug-84</td>
<td>21.3</td>
<td>69.0</td>
<td>M35379.044146</td>
</tr>
</tbody>
</table>

STURGEON COUNTY-OPERATED WATER WELLS

<table>
<thead>
<tr>
<th>Owner</th>
<th>Location</th>
<th>Aquifer Name</th>
<th>Date Water Drilled</th>
<th>Completed Depth Metres</th>
<th>NPWL Metres</th>
<th>UID</th>
</tr>
</thead>
<tbody>
<tr>
<td>County of Sturgeon</td>
<td>NW 23-055-24 W4M</td>
<td>Lower Surficial</td>
<td>14-Jun-91</td>
<td>76.8</td>
<td>252.0</td>
<td>M35377.090176</td>
</tr>
<tr>
<td>County of Sturgeon</td>
<td>14-24-055-25 W4M</td>
<td>Lower Horseshoe Canyon</td>
<td>08-Mar-78</td>
<td>12.2</td>
<td>40.0</td>
<td>M35377.055440</td>
</tr>
</tbody>
</table>