County of Camrose No. 22

Part of the North Saskatchewan River Basin Tp 041 to 050, R 16 to 22, W4M **Regional Groundwater Assessment**

Prepared for County of Camrose No. 22

In conjunction with

Agriculture and Agri-Food Canada

Agriculture et Agroalimentaire Canada Prairie Farm Rehabilitation Administration du rétablisseme agricole des Prairies

Prepared by hydrogeological consultants ltd. (HCL) 1.800.661.7972 Our File No.: 04-101

PERMIT TO PRACTICE

HYDROGEOLOGICAL CONSULTANTS LTD.

Signature

Date_

PERMIT NUMBER P 385

The Association of Professional Engineers, Geologists and Geophysicists of Alberta

© 2005 County of Camrose No. 22

February 2005

groundwater consulting HC environmental sciences

Table of Contents

1	Pro	ject (Overview	1
	1.1	Pur	rpose	1
	1.2	The	e Project	2
	1.3	Abo	out This Report	2
2	Intro	oduc	tion	3
	2.1	Set	tting	3
	2.2	Clir	nate	3
	2.3	Bad	ckground Information	4
	2.3	5.1	Number, Type and Depth of Water Wells	4
	2.3	.2	Number of Water Wells in Surficial and Bedrock Aquifers	5
	2.3	.3	Casing Diameter and Type	6
	2.3	.4	Dry Water Test Holes	6
	2.3	.5	Requirements for Licensing	7
	2.3	.6	Base of Groundwater Protection	8
3	Ter	ms		10
4	Met	thodo	blogy	11
	4.1	Dat	ta Collection and Synthesis	11
	4.2	Spa	atial Distribution of Aquifers	13
	4.3	Hyo	drogeological Parameters	13
	4.4	Ма	ps and Cross-Sections	14
	4.5	Sof	ftware	14
5	Aqu	uifers	· · · · · · · · · · · · · · · · · · ·	15
	5.1	Bad	ckground	15
	5.2	Αqι	uifers in Surficial Deposits	15
	5.2	.1	Geological Characteristics of Surficial Deposits	15
	5.2	.2	Sand and Gravel Aquifer(s)	18
	5.2	.3	Upper Sand and Gravel Aquifer	21
	5.2	.4	Lower Sand and Gravel Aquifer	22
	5.3	Bed	drock	23
	5.3	5.1	Bedrock Aquifers	23
	5.3	.2	Geological Characteristics	24
	5.3	.3	Upper Bedrock Completion Aquifer(s)	25
	5.3	.4	Chemical Quality of Groundwater	27
	5.3	.5	Upper Horseshoe Canyon Aquifer	28
	5.3.6		Middle Horseshoe Canyon Aquifer	30

		rose No. 22, Part of the North Saskatchewan River Basin ndwater Assessment, Tp 041 to 050, R 16 to 22, W4M	Page iii					
	5.3.7	Lower Horseshoe Canyon Aquifer	32					
	5.3.8	Bearpaw Aquifer	34					
	5.3.9	Oldman Aquifer	36					
6	Ground	vater Budget	37					
6	6.1 Hy	drographs	37					
6	6.2 Est	imated Groundwater Use in the County of Camrose	38					
6	6.3 Gro	bundwater Flow	40					
	6.3.1	Quantity of Groundwater	41					
	6.3.2	Recharge/Discharge	41					
6	6.4 Are	eas of Groundwater Decline	43					
	6.4.1	Sand and Gravel Aquifer(s)	43					
	6.4.2	Upper Bedrock Aquifer(s)	44					
6	6.5 Dis	cussion of Specific Issues	45					
	6.5.1	Area 1 – North Slope of Battle River/Driedmeat Lake Townships 044 and 045,						
	Range	s 17 to 19, W4M	45					
	6.5.2	Area 2 – Three Water Test Sites for Community Water Wells	47					
	6.5.3	.5.3 Area 3 – Three Areas for Groundwater-Based Industrial Development						
	6.5.4	Area 4 – Village of Ferintosh						
7	Recomm	nendations	52					
8	Referen	ces	54					
9	Glossar	у	62					
10	Convers	sions	65					

Page iv

List of Figures

Figure 1. Surface Topography	3
Figure 2. Percentage of Domestic, Domestic/Stock and Stock Water Wells vs Completed Depth	4
Figure 3. Locations of Water Wells and Springs	5
Figure 4. Surface Casing Types Used in Drilled Water Wells	6
Figure 5. Depth to Base of Groundwater Protection (after EUB, 1995)	9
Figure 6. Generalized Cross-Section (for terminology only)	10
Figure 7. Geologic Column	10
Figure 8. Hydrogeological Map	12
Figure 9. Bedrock Topography	15
Figure 10. Cross-Section G - G'	16
Figure 11. Amount of Sand and Gravel in Surficial Deposits	17
Figure 12. Thickness of Sand and Gravel Aquifer(s)	18
Figure 13. Water Wells Completed in Surficial Deposits	18
Figure 14. Apparent Yield for Water Wells Completed in Sand and Gravel Aquifer(s)	19
Figure 15. Sand and Gravel Water Well Yields vs Completed Depth	19
Figure 16. Total Dissolved Solids in Groundwater from Surficial Deposits	20
Figure 17. Apparent Yield for Water Wells Completed through Upper Sand and Gravel Aquifer	21
Figure 18. Apparent Yield for Water Wells Completed through Lower Sand and Gravel Aquifer	22
Figure 19. Cross-Section D - D'	23
Figure 20. Bedrock Geology	24
Figure 21. Apparent Yield for Water Wells Completed in Upper Bedrock Aquifer(s)	25
Figure 22. Bedrock Water Well Yields vs Completed Depth	26
Figure 23. Fluoride vs Sodium Concentrations in Groundwater in Upper Bedrock Aquifer(s)	27
Figure 24. Apparent Yield for Water Wells Completed through Upper Horseshoe Canyon Aquifer	28
Figure 25. Fluoride in Groundwater in Upper Bedrock Aquifer(s)	29
Figure 26. Apparent Yield for Water Wells Completed through Middle Horseshoe Canyon Aquifer	30
Figure 27. Apparent Yield for Water Wells Completed through Lower Horseshoe Canyon Aquifer	32
Figure 28. Apparent Yield for Water Wells Completed through Bearpaw Aquifer	34
Figure 29. Apparent Yield for Water Wells Completed through Oldman Aquifer	36
Figure 30. Hydrograph – AENV Ferintosh Landfill Obs WW	37
Figure 31. Hydrograph – AENV Camrose Landfill Obs WW	37
Figure 32. Estimated Water Well Use Per Section (for larger version, see page A-61)	39
Figure 33. Non-Pumping Water-Level Surface in Surficial Deposits Based on Water Wells Less than 20 Metres Deep	41
Figure 34. Recharge/Discharge Areas between Surficial Deposits and Upper Bedrock Aquifer(s)	42
Figure 35. Changes in Water Levels in Sand and Gravel Aquifer(s)	43
Figure 36. Areas of Potential Groundwater Decline – Upper Bedrock Aquifer(s)	44
Figure 37. Field-Verified Water Well Survey – Area 1	45
Figure 38. Non-Pumping Water-Level Decline in Upper Bedrock Aquifer(s) – Area 1	45
Figure 39. Non-Pumping Water-Level Decline in Surficial Deposits – Area 1	46
Figure 40. Southwest-Northeast Cross-section – Area 1	46
Figure 41. Areas of Groundwater Potential – Area 2	47

Regional Groundwater Assessment, Tp 041 to 050, R 16 to 22, W4M

List of Tables

Table 1. Proposed Use for Water Wells	4
Table 2. Completed Depths for Domestic, Domestic/Stock and Stock Water Wells	4
Table 3. Licensed and/or Registered Groundwater Diversions	7
Table 4. Estimated Water Requirement for Livestock in the County of Camrose	8
Table 5. Water Wells Completed below the Base of Groundwater Protection	9
Table 6. Apparent Yields of Sand and Gravel Aquifer(s)	19
Table 7. Concentrations of Constituents in Groundwaters from Surficial Deposits	20
Table 8. Completion Aquifer for Upper Bedrock Water Wells	25
Table 9. Apparent Yields of Bedrock Aquifers	26
Table 10. Concentrations of Constituents in Groundwaters from Upper Bedrock Aquifer(s)	27
Table 11. Apparent Concentrations of Constituents in Groundwaters from Upper Horseshoe Canyon Aquifer	29
Table 12. Apparent Concentrations of Constituents in Groundwaters from Middle Horseshoe Canyon Aquifer	31
Table 13. Apparent Concentrations of Constituents in Groundwaters from Lower Horseshoe Canyon Aquifer	33
Table 14. Apparent Concentrations of Constituents in Groundwaters from Bearpaw Aquifer	35
Table 15. Total Domestic and Stock Groundwater Diversions by Aquifer	38
Table 16. Total Groundwater Diversions	39
Table 17. Groundwater Budget	40
Table 18. Water-Level Decline in Sand and Gravel Aquifer(s)	43
Table 19. Water-Level Decline of More than Five Metres in Upper Bedrock Aquifer(s)	44
Table 20. gwQuery Results – Three Locations	
Table 21. gwQuery Results – Two Locations	48
Table 22. Maximum Depth to Drill for Proposed Water Test Hole Drilling Sites for the Village of Ferintosh	51
Table 23. gwQuery Results – Village of Ferintosh Proposed Water Test Hole Drilling Sites	51

Appendices

- A. Hydrogeological Maps and Figures
- B. Maps and Figures on CD-ROM
- C. General Water Well Information
- D. Maps and Figures Included as Large Plots
- E. Water Wells That Have been Field-Verified and Water Wells that are Recommended for Field-Verification including County-Operated Water Wells

County of Camrose No. 22, Part of the North Saskatchewan River Basin

Page vi

Acknowledgements

Hydrogeological Consultants Ltd. would like to thank the following people for their cooperation and helpful contributions on this project:

Mr. Terry Dash – AAFC-PFRA Mr. Glen Brandt – AAFC-PFRA Mr. Paul King – County of Camrose

For additional copies of the report/CD-ROM, please contact the following:

- 1-800-GEO-WELL
- The Groundwater Centre/Regional Groundwater Assessment

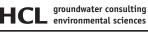
http://www.groundwatercentre.com/m info rgwa.asp

1 PROJECT OVERVIEW

"Water is the lifeblood of the earth." – Anonymous

How a County takes care of one of its most precious resources - groundwater - reflects the future wealth and health of its people. Good environmental practices are not an accident. They must include genuine foresight with knowledgeable planning. Implementation of strong practices not only commits to a better quality of life for future generations, but also creates a solid base for increased economic activity. **Though this report's scope is regional, it is a first step for the County of Camrose No. 22 in managing their groundwater. It is also a guide for future groundwater-related projects.**

1.1 Purpose


This project is a regional groundwater assessment of the County of Camrose No. 22 prepared by Hydrogeological Consultants Ltd. (HCL) with financial and technical assistance from the Prairie Farm Rehabilitation Administration branch of Agriculture and Agri-Food Canada (AAFC-PFRA) and the County of Camrose. The project study area includes the parts of the County of Camrose bounded by townships 041 to 050, ranges 16 to 22, W4M (herein referred to as the County). The regional groundwater assessment provides the information to assist in the management of the groundwater resource within the County. Groundwater resource management involves determining the suitability of various areas in the County for particular activities. These activities can vary from the development of groundwater for country residential, agricultural or industrial purposes, to the siting of waste storage. **Proper management ensures protection and utilization of the groundwater resource for the maximum benefit of the people of the County.**

The regional groundwater assessment will:

- identify the aquifers¹ within the surficial deposits² and the upper bedrock
- spatially identify the main aquifers
- describe the quantity and quality of the groundwater associated with each aquifer
- identify the hydraulic relationship between aquifers
- identify possible groundwater depletion areas associated with each upper bedrock aquifer.

Under the present program, the groundwater-related data for the County have been assembled. Where practical, the data have been digitized. These data are then used in the regional groundwater assessment for the County of Camrose.

2

1.2 The Project

This regional study should only be used as a guide. Detailed local studies are required to verify hydrogeological conditions at given locations.

The present project is made up of eight parts as follows:

Task 1 - Data Collection and Review

Task 2 - Hydrogeological Maps, Figures, Digital Data Files

Task 3 - Hydrogeological Evaluation and Preparation of Report

Task 4 - Groundwater Information Query Software

Task 5 - Review of Draft Report and GIS Data Files

Task 6 - Report Presentation and Familiarization Session

Task 7 - Provision of Report, Maps, Data Layers and Query

Task 8 - Provision of Compact Disk for Sale to General Public.

This report and the accompanying maps represent Tasks 2 and 3.

1.3 About This Report

This report provides an overview of (a) the groundwater resources of the County of Camrose, (b) the processes used for the present project, and (c) the groundwater characteristics in the County.

Additional technical details are available from files on the CD-ROM provided with the final version of this report. The files include the geo-referenced electronic groundwater database, maps showing distribution of various hydrogeological parameters, the groundwater query, ArcView files and ArcExplorer files. Likewise, all of the illustrations and maps shown in this report, plus additional maps, figures and cross-sections, are available on the CD-ROM. In order to avoid map-edge effects, all maps are based on an analysis of hydrogeological data from townships 041 to 050, ranges 16 to 22, W4M, plus a buffer area of 5,000 metres. For convenience, poster-size maps and cross-sections have been prepared as a visual summary of the results presented in this report. Copies of these poster-size drawings have been forwarded with this report, and are included as page-size drawings in Appendix D.

Appendix A features page-size copies of the figures within the report plus additional maps and cross-sections. An index of the page-size maps and figures is given at the beginning of Appendix A. A plastic County map outline is provided to overlay the maps, and contains information such as towns, main rivers, etc.

Appendix B provides a complete list of maps and figures included on the CD-ROM.

Appendix C includes the following:

- 1) a procedure for conducting aquifer tests with water wells³
- 2) a table of contents for the Water (Ministerial) Regulation under the Water Act
- 3) interpretation of chemical analysis of drinking water
- 4) additional information.

The Water (Ministerial) Regulation deals with the wellhead completion requirement (no more water-well pits), the proper procedure for abandoning unused water wells and the correct procedure for installing a pump in a water well. The *Water Act* was proclaimed 10 Jan 1999.

Appendix D includes page-size copies of the poster-size figures provided with this report.

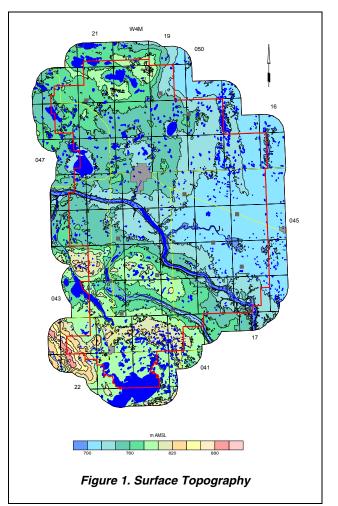
Appendix E provides a list of water wells that have been field-verified and water wells that are recommended for field-verification.

See glossary

3

2 INTRODUCTION

2.1 Setting


The County of Camrose is situated in central Alberta. The County boundaries mainly follow township or section lines, which include parts of the area bounded by townships 041 to 050, ranges 16 to 22, W4M.

Regionally, the topographic surface varies between 680 and 920 metres above mean sea level (AMSL). The lowest elevations occur mainly in association with the Battle River; the highest elevations are in the southwestern parts of the County, as shown on Figure 1 and page A-3.

The County is within the North Saskatchewan and South Saskatchewan River basins (see page A-4, and Cross-Sections F-F' and G-G' on pages A-19 and A-20). The area is well drained by the Battle River, Driedmeat Creek, Meeting Creek, and numerous lakes.

2.2 Climate

The County of Camrose lies within the transition zone between a humid, continental Dfb climate and a semiarid Bsk climate. This classification is based on potential evapotranspiration⁴ values determined using the Thornthwaite method (Thornthwaite and Mather, 1957), combined with the distribution of natural ecoregions in the area. The ecoregions map (Strong and Leggat, 1981) shows that the County is located

in the Aspen Parkland region, a transition between boreal forest and grassland environments.

A Dfb climate consists of long, cool summers and severe winters. The mean monthly temperature drops below -3° C in the coolest month, and exceeds 10° C in the warmest month. A Bsk climate is characterized by its moisture deficiency, where mean annual potential evapotranspiration exceeds the mean annual precipitation.

The mean annual precipitation averaged from two meteorological stations within the County and one in Beaver County measured 493 millimetres (mm), based on data from 1971 to 2000. The annual temperature averaged 2.8° C, with the mean monthly temperature reaching a high of 16.3° C in July, and dropping to a low of -12.7° C in January. The calculated annual potential evapotranspiration is 494 millimetres.

See glossary

2.3 Background Information

2.3.1 Number, Type and Depth of Water Wells

There are currently 7,517 records in the groundwater database for the County, of which 6,323 are water wells. Of the 6,323 water wells, there is a proposed use for 5,774 water wells, as shown in the adjacent table. Of the 5,774 water wells, there are records for domestic (3,214), domestic/stock (1,525) or stock (817) purposes. The remaining 218 water wells were completed for municipal (87), observation (56), industrial (25), and other numerous categories (50).

Based on a rural population of 7,294 (Phinney, 2003),

Depth Completed (m)	Domestic	Domestic/Stock	Stock	Total	Percentage
<10	94	91	15	200	4
10 to 30	895	481	298	1,674	32
30 to 60	1,397	538	245	2,180	41
60 to 100	524	375	230	1,129	21
>100	59	25	21	105	2
Total	2,969	1,510	809	5,288	

 Table 2. Completed Depths for Domestic,

 Domestic/Stock and Stock Water Wells

The highest percentages of domestic (47%) and domestic/stock (36%) water wells are completed between 30 and 60 metres below ground surface, and the highest percentage of stock water wells (37%) are completed between ten and 30 metres below ground surface, as shown below in Figure 2.

Details for lithology⁵ are available for 2,969 water wells.

No Date	1684	Domestic/Stock 298	89	36	0	3	22	329	Total 2107
pre-1955	86	455	7	4	0	1	1	85	552
1955	35	4	5	1	3	2	0	8	45
1960	49	8	11	2	0	1	0	21	70
1965	94	36	50	5	5	1	1	29	185
1970	115	51	98	1	0	0	2	22	265
1975	248	164	125	8	3	5	1	21	545
1980	282	203	119	13	35	6	7	20	617
1985	169	183	169	7	6	3	2	12	528
1990	170	77	70	2	0	2	2	2	319
1995	165	30	35	7	4	0	8	0	237
2000	117	16	39	1	0	1	4	0	173
Total	3214	1525	817	87	56	25	50	549	6323

there are three domestic, domestic/stock and stock water wells per family of four. There are 5,288 domestic, domestic/stock or stock water wells with a completed depth, of which 4,054 (77%) are completed at depths of less than 60 metres below ground surface, and 41% are completed between 30 and 60 metres below ground surface.

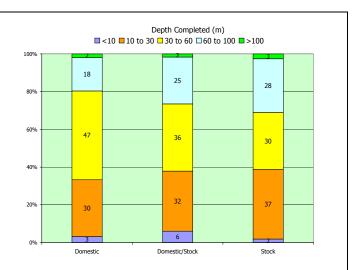
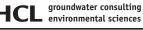
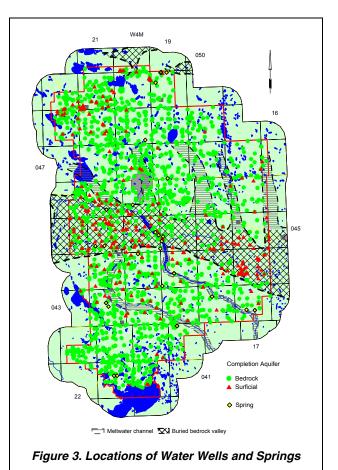



Figure 2. Percentage of Domestic, Domestic/Stock and Stock Water Wells vs Completed Depth

Page 4

See glossary

5

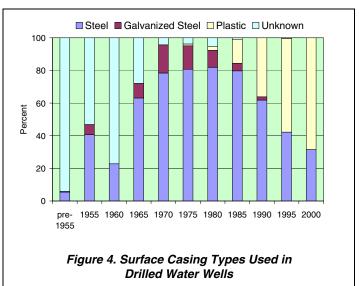


2.3.2 Number of Water Wells in Surficial and Bedrock Aquifers

There are 2,479 water wells with completion interval and lithologic information, such that the aquifer in which the water wells are completed can be identified. The water wells that were not drilled deep enough to encounter the bedrock plus water wells that have the bottom of their completion interval above the top of the bedrock are water wells completed in surficial aquifers. Of the 2,479 water wells for which aquifers could be defined, 305 are completed in surficial aquifers, with 204 (67%) having a completed in surficial deposits are mainly concentrated in the buried bedrock valley and adjacent to meltwater channels (see Figure 9 on page 15), and in the northwestern part of the County.

The data for 2,174 water wells show that the top of the water well completion interval is below the bedrock surface, indicating that the water wells are completed in at least one bedrock aquifer. From Figure 3 (also see page A-8), it can be seen that water wells completed in bedrock aquifers occur throughout the County.

Within the County of Camrose, there are currently records for 28 springs in the groundwater database, including three springs that were documented by Borneuf (1983). There are 14 springs having at least one total dissolved solids (TDS) value, with nine springs having a TDS of more than 500 milligrams per litre (mg/L). No flow rates for the 28 springs are available in the groundwater database.

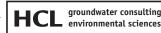


2.3.3 Casing Diameter and Type

Data for casing diameters are available for 3,691 water wells, with 3,360 (91%) indicated as having a diameter of less than 275 mm and 331 (9%) having a diameter of more than 275 mm. The casing diameters of greater than 275 mm are mainly bored, hand dug, or dug by backhoe water wells and those with a surface-casing diameter of less than 275 mm are mainly drilled water wells. The entire water well database for the County suggests that 628 of the water wells in the County were bored, hand dug or dug by backhoe and 4,475 are drilled water wells.

For a water well with a small-diameter casing to be effective in surficial deposits and to provide sand-free groundwater, the water well must be completed with a water well screen. Some water wells completed in the surficial deposits are completed in low-permeability aquifers and have a large-diameter casing. The large-diameter water wells may have been hand dug or bored and because they are completed in very low permeability aquifers, most of these water wells would not benefit from water well screens. Within the County, casing-diameter information is available for 278 of the 305 water wells completed in the surficial deposits, of which 251 surficial water wells have a casing diameter of less than 275 millimetres and are assumed to be drilled water wells. Within the County, casing-diameter information is available for 2,117 have a surface-casing diameter of less than 275 mm and have been mainly completed with either a perforated liner or as open hole; there are 45 bedrock water wells completed with a water well screen.

Where the casing material is known, steel surface casing materials have been used in 73% of the drilled water wells over the last 45 years. For the remaining drilled water wells with known surface casing material, 20% were completed with plastic casing, and seven percent were completed with galvanized steel casing. The main years where the type of surface casing was undocumented were prior to 1955 to the mid-1960s. The use of steel surface casing averaged at least 80% until the 1990s, at which time plastic casing started to replace the use of steel casing. Plastic casing was first used in May 1977, and is currently being used in 70% of the water wells drilled in the County. Galvanized steel surface casings in drilled water well were first used in the County in September 1956 and were last used in November 1994.



2.3.4 Dry Water Test Holes

In the County, there are 7,517 records in the groundwater database. Of these 7,517 records, 128 (2%) are indicated as being "dry" or "abandoned" with "insufficient water"⁶. Of the 128 "dry" water test holes, ten are completed in surficial deposits and 117 are completed in Upper Bedrock Aquifer(s); the aquifer for the remaining one "dry" water test hole is unknown. Thirty percent of all water wells with apparent yield estimates were judged to yield less than 6.5 m³/day (1 igpm).

The locations of 127 (ten surficial and 117 bedrock) "dry" water test holes are shown on Figure 14 on page 19 and on Figure 21 on page 25, respectively.

[&]quot;dry" can be due to a variety of reasons: skill of driller, type of drilling rig/method used, the geology encountered

6

2.3.5 Requirements for Licensing

With some exemptions, a diversion of groundwater starting after 01 Jan 1999 must have a licence. Exemptions include (1) the diversion for household use of up to 3.4 cubic metres per day (1,250 m³/year (750 imperial gallons per day⁷), (2) the diversion of groundwaters with total dissolved solids in excess of 4,000 mg/L, (3) the diversion from a manually pumped water well, or (4) a diversion of groundwater that was eligible for registration as "Traditional Agriculture Use" but was not registered can continue to be used for Traditional Agriculture Use but without the protection of the *Water Act*.

In the last update from the Alberta Environment (AENV) groundwater database, 1,066 groundwater licences and/or registrations were shown to be within the County, with the most recent groundwater user being registered in April 2003. Of the 1,066 licensed and registered groundwater users, 882 (83%) are registrations of Traditional Agriculture Use under the Water Act. These 882 registered users will continue to divert groundwater for stock watering and/or crop spraying. Typically, the groundwater diversion for crop spraying averages less than one m³/day so most registered groundwater diversion is for stock watering. Of the 882 registrations, 404 (46%) could be linked to the AENV groundwater database. Of the remaining 184 groundwater users, 140 are for agricultural purposes (mainly stock watering), 32 are for municipal purposes (mainly urban), six are for commercial purposes, three are for dewatering purposes, and the remaining three are for recreation purposes. Of these 184 licensed groundwater diversions in the County, 107 (58%) could be linked to the AENV groundwater database. The maximum amount of groundwater that can be diverted each year from the water wells associated with these licences and/or registrations is 5,338 m³/day, although actual use could be less. Of the 5,338 m³/day, 2,154 m³/day (40%) is registered for Traditional Agriculture Use, 1,066 m³/day (20%) licensed for agricultural purposes, 304 (6%) is licensed for commercial purposes, 521 (10%) is licensed for dewatering purposes, 1,263 (24%) is licensed for municipal purposes, and 30 m³/day (< 1%) is licensed for recreation purposes, as shown below in Table 3. A figure showing the locations of the groundwater users with either a licence or a registration is in Appendix A (page A-9) and on the CD-ROM. Table 3 also shows a breakdown of the 1,066 groundwater licences and/or registrations by the aquifer in which the water well is completed. Forty-five percent of the total quantity of licensed and registered groundwater use is from the Upper and Lower Horseshoe Canyon aquifers. The water wells associated with the 68 licensed and registered use where a specific aguifer cannot be determined is because insufficient completion information is available.

No. of Licensed Groundwater Users* (m ³ /day) Total Quar Licences and/or Registrations Licensed and/or									
Aguifer **	Registrations	(m ³ /day)	Agricultural	Commercial	Dewatering	Municipal	Recreation	Licensed and/or Registered Groundwater Diversion (m ³ /day)	Percenta
Multiple Surficial Completions	84	157	76	14	308	0	0	555	10.4
Upper Sand and Gravel	64	141	76	235	206	17	0	675	12.6
Lower Sand and Gravel	57	113	15	51	7	395	0	581	10.9
Mulitple Bedrock Completion	110	221	147	0	0	0	0	368	6.9
Upper Horseshoe Canyon	107	236	284	0	0	649	0	1,169	21.9
Middle Horseshoe Canyon	101	166	66	0	0	88	0	320	6.0
Lower Horseshoe Canyon	396	795	297	4	0	114	30	1,240	23.2
Bearpaw	79	179	71	0	0	0	0	250	4.7
Unknown	68	146	34	0	0	0	0	180	3.4
Total ⁽¹⁾	1,066	2,154	1,066	304	521	1,263	30	5,338	100
Percentage The values given in the table have bee	n rounded and, there	40.4 efore, the columns	20.0 * - data from Al s and rows may r		9.8 Juifer identified b ally	23.7 by HCL	0.6	100	
Percentage		efore, the columns	* - data from A	ENV ** - Aq not add up equa	uifer identified t	by HCL			
Percentage			* - data from A	ENV ** - Aq not add up equa	uifer identified t	by HCL			
Percentage		efore, the columns	* - data from A	ENV ** - Aq not add up equa	uifer identified t	by HCL			
Percentage		efore, the columns	* - data from A	ENV ** - Aq not add up equa	uifer identified t	by HCL			
Percentage		efore, the columns	* - data from A	ENV ** - Aq not add up equa	uifer identified t	by HCL			
Percentage		efore, the columns	* - data from A	ENV ** - Aq not add up equa	uifer identified t	by HCL			
Percentage		efore, the columns	* - data from A	ENV ** - Aq not add up equa	uifer identified t	by HCL			
Percentage		efore, the columns	* - data from A	ENV ** - Aq not add up equa	uifer identified t	by HCL			
Percentage		efore, the columns	* - data from A	ENV ** - Aq not add up equa	uifer identified t	by HCL			
Percentage		efore, the columns	* - data from A	ENV ** - Aq not add up equa	uifer identified t	by HCL			
Percentage		efore, the columns	* - data from A	ENV ** - Aq not add up equa	uifer identified t	by HCL			

see conversion table on page 65

7

HCL groundwater consulting environmental sciences

Based on the 2001 Agriculture Census (Statistics Canada), the calculated water requirement for 1,266,016 livestock for the County is in the order of 9,536 m³/day. This number includes intensive livestock use but not domestic animals and is based on an estimate of water use per livestock type. Of the 9,536 m³/day calculated livestock use, AENV has authorized a groundwater diversion of 3,220 m³/day (agricultural and registration) (34%)

and licensed a surface-water diversion (stock and registration) based on consumptive use of 912 m³/day (10%) for a total diversion of 4,132 m³/day. Agriculture purpose includes water diverted and used for stockwatering and feedlot use. This assumes the majority of the groundwater and surface water authorized for diversion for Traditional Agriculture Use is used for watering livestock. Using this assumption, 44% of the estimated total water requirements of 9,536 m³/day is accounted for.

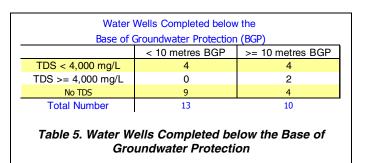
The remaining 5,404 m³/day (57%) of the calculated water requirement for livestock use would have to be from other, including unlicensed, sources. The discrepancy may be partially accounted for in several ways. Based on some monitoring and reporting situations, the estimated water requirements for livestock, used by AENV, tend to be somewhat high. Some livestock water requirements would be made up from free-standing water following precipitation events, thus reducing the expected quantity needed. Also, it should be noted that 'household use', as defined in the *Water Act*, can provide sufficient water for about 75 head of cattle,

		Estimated Water
Livestock Type	Number	Requirement (m3/day)
Total hens and chickens	972,700	199
Turkeys	60,817	41
Other poultry	4,068	1
Total cattle and calves	95,767	5,224
Bulls, 1 year and over	2,024	138
Total cows	39,927	2,178
Heifers, 1 year and over	9,498	432
Calves, under 1 year	36,325	495
Total pigs	30,603	556
Total sheep and lambs	8,671	79
Horses and ponies	3,751	171
Goats	1,031	9
Rabbits	272	0
Mink	0	0
Fox	0	0
Bison	137	6
Deer and elk	265	4
Llamas and alpacas	160	1
Totals	1,266,016	9,536

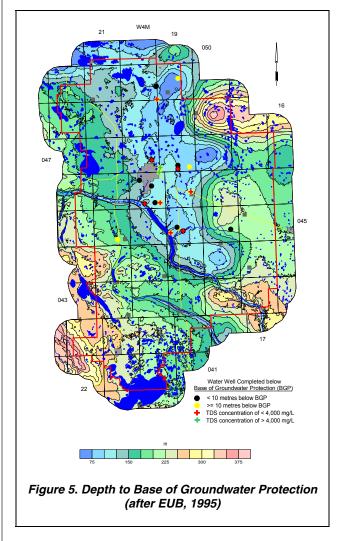
Table 4. Estimated Water Requirement for Livestock in the County of Camrose

with no need for a licence. It is possible that some such use may have been registered as Traditional Agriculture Use and would therefore be included in the registration quantity. Also, diversions of groundwater and surface water that were eligible for registration as Traditional Agriculture Use can continue to be used for traditional agricultural purposes without the need for authorization.

2.3.6 Base of Groundwater Protection

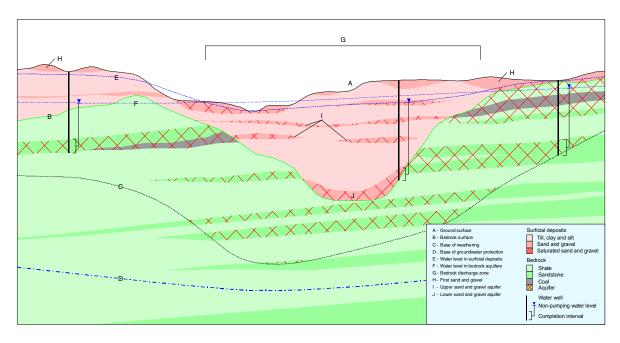

In general, AENV defines the Base of Groundwater Protection (BGP) as the elevation below which the groundwater will have more than 4,000 mg/L of total dissolved solids. By using the ground elevation, formation elevations, and Alberta Energy and Utilities Board (EUB) information indicating the formations containing the deepest useable water for agricultural needs, a value for the depth to the BGP can be determined. These values are gridded using the Kriging⁸ method to prepare a depth to the BGP surface. This depth, for the most part, would be the maximum drilling depth for a water well for agricultural purposes or for a potable water supply. If a water well has TDS concentrations that exceed 4,000 mg/L, the groundwater use does not require licensing by AENV. The depth to the BGP is mainly less than 125 metres below ground surface in the central parts of the County but can be more than 300 metres below ground surface in the southwestern, southeastern and northeastern parts of the County, as shown on Figure 5 on the following page, on the cross-sections presented this report and in Appendix A, and on the CD-ROM.

See glossary


8

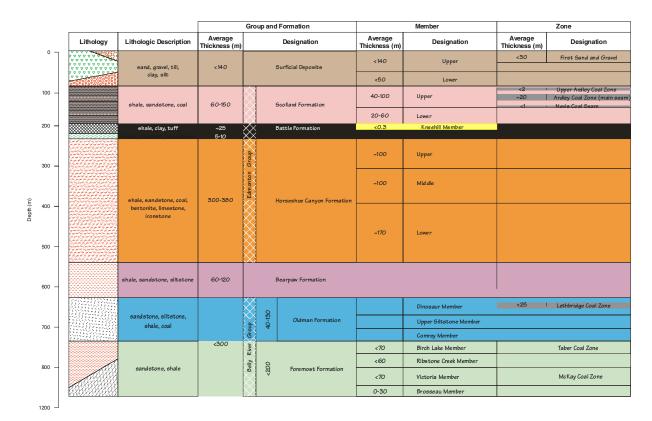
There are 5,948 water wells with completed depth data, of which 23 appear to be completed below the BGP. Of the 23 water wells completed below the BGP, 13 water wells are completed less than ten metres below the BGP and ten are completed greater than or equal to ten metres below the BGP, as shown in the adjacent table. Chemistry details are available for ten of the 23 water wells, of which two water wells had TDS concentrations that were greater than 4,000 mg/L, both of which are from

water wells that are completed at least ten metres below the BGP. In the County, the BGP mainly coincides with the top of the Bearpaw Formation (see pages A-14 to A-20).



Proper management of the groundwater resource requires water-level data. These data are often collected from observation water wells. At the present time, there are two AENV-operated observation water wells within the County (see page A-59 for the observation water well locations). In the past, the data for authorized diversions have been difficult to obtain from AENV, in part because of the failure of the applicant to provide the data. Even with the available sources of data, the number of water-level data points relative to the size of the County is too few to provide a reliable groundwater budget (see section 6.0 of this report). The most cost-efficient method to collect additional groundwater monitoring data would be to have the water well owners measuring the water level in their own water well on a regular basis, as has been the case in Country Ground the Wildrose Water Monitoring Association and the M.D. of Flagstaff.

CL groundwater consulting environmental sciences


Page 10

3 TERMS

Figure 6. Generalized Cross-Section (for terminology only)

(for larger version, see page A-11)

Figure 7. Geologic Column

(for larger version, see page A-12)

4 METHODOLOGY

4.1 Data Collection and Synthesis

The AENV groundwater database is the main source of groundwater data. The database includes the following:

- 1) water well drilling reports
- 2) aquifer test results from some water wells
- 3) locations of some springs
- 4) locations for some water wells determined during water well surveys
- 5) chemical analyses for some groundwaters⁹
- 6) locations of some flowing shot holes
- 7) locations of some structure test holes
- 8) a variety of data related to the groundwater resource.

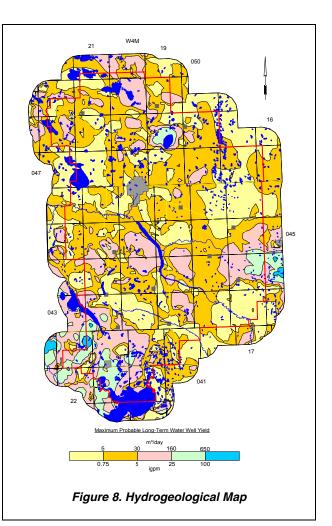
The main disadvantage to the database is the reliability of the information entered into the database. Very little can be done to overcome this lack of quality control in the data collection, other than to assess the usefulness of control points relative to other data during the interpretation. Another disadvantage to the database is the lack of adequate spatial information. Any duplicate water wells that have been identified within the County have been removed from the database used in this regional groundwater assessment.

The AENV groundwater database uses an area-land-based system with only a limited number of records having a value for ground elevation. The locations for records usually include a quarter section description; a few records also have a land description that includes a Legal Subdivision (Lsd). For digital processing, a record location requires a horizontal coordinate system. In the absence of an actual location for a record, the record is given the coordinates for the centre of the land description.

The present project uses the 10TM coordinate system based on the NAD27 datum. This means that a record for the NW ¼ of section 3, township 044, range 21, W4M would have a horizontal coordinate with an Easting of 136,754 metres and a Northing of 5,845,715 metres, the centre of the quarter section. If the water well has been repositioned by AAFC-PFRA using orthorectified aerial photographs, the location will be more accurate, possibly within several tens of metres of the actual location. Once the horizontal coordinates are determined for a record, a ground elevation for that record is obtained from the 1:20,000 Digital Elevation Model (DEM); AltaLIS Ltd. provides the DEM.

At many locations within the County, more than one water well is completed at one legal location. Digitally processing this information is difficult. To obtain a better understanding of the completed depths of water wells, a digital surface was prepared representing the minimum depth for water wells and a second digital surface was prepared for the maximum depth. Both of these surfaces are used in the groundwater query on the CD-ROM. When the maximum and minimum water well depths are similar, there is only one aquifer that is being used at a given location.

After assigning spatial control for the ground location for the records in the groundwater database, the data are processed to determine values for hydrogeological parameters. As part of the processing, obvious keying errors in the database are corrected.


Where possible, determinations are made from individual records in order to assign water wells to aquifers and to obtain values for the following:

- 1) depth to bedrock
- 2) total thickness of sand and gravel below 15 metres
- 3) total thickness of saturated sand and gravel
- 4) depth to the top and bottom of completion intervals¹⁰.

HCL groundwater consulting environmental sciences

 ⁹ Since 1986, Alberta Health and Wellness has restricted access to chemical analysis data, and hence the database includes only limited amounts of chemical data after 1986.
 ¹⁰ See glossary

Also, where sufficient information is available, values for apparent transmissivity ¹¹ and apparent yield ¹² are calculated, based on the aquifer test summary data supplied on the water well drilling reports. Where valid detailed aquifer test results exist, the interpreted data provide values for aquifer transmissivity and effective transmissivity. Since the last regional hydrogeological maps covering the County were published in 1971 (Le Breton) and in 1979 (Stein), more than 2,500 values for apparent transmissivity and apparent yield have been added to the groundwater database. The median apparent yield of the water wells with apparent yield values in the County is 15 m³/day. Approximately 65% of the apparent yield values for these water wells are less than 30 m³/day. With the addition of the apparent yield values, including a 0.1-m³/day value assigned to "dry" water wells and water test holes, a hydrogeological map has been prepared to help illustrate the general groundwater availability across the County (Figure 8 and page A-13). The map is based on groundwater being obtained from all aquifers and has been prepared to allow direct comparison with the results provided on the Alberta Geological Survey (AGS) hydrogeological maps. In general, the AGS maps show higher estimated long-term yields. The differences between the two map renderings may be a result of fewer apparent yield values, not applying a 0.1-m³/day for "dry" water wells, and the gridding method employed by the AGS.

The EUB well database includes records for wells drilled for the oil and gas industry. The information from this source includes:

- 1) spatial control for each well site
- 2) depth to the top of various geologic units
- 3) type and intervals for various down-hole geophysical logs
- 4) drill stem test (DST) summaries.

Values for apparent transmissivity and apparent yield are calculated from the DST summaries.

Published and unpublished reports and maps provide the final source of information to be included in the new groundwater database. The reference section of this report lists the available reports. The only digital data from publications are from the Geological Atlas of the Western Canada Sedimentary Basin (Mossop and Shetsen, 1994). These data are used to support the geological interpretation of geophysical logs but cannot be distributed because of a licensing agreement.

For definitions of Transmissivity, see glossary
 For definitions of Yield, see glossary

4.2 Spatial Distribution of Aquifers

Determination of the spatial distribution of the aquifers is based on:

- 1) lithologs provided by the water well drillers
- 2) geophysical logs from structure test holes
- 3) geophysical logs for wells drilled by the oil and gas industry
- 4) data from existing cross-sections.

The aquifers are defined by mapping the tops and bottoms of individual geologic units. The values for the elevation of the top and bottom of individual geologic units at specific locations help to determine the spatial distribution of the individual surfaces. Establishment of a surface distribution digitally requires preparation of a grid. The inconsistent quality of the data necessitates creating a representative sample set obtained from the entire data set. If the data set is large enough, it can be treated as a normal population and the removal of extreme values can be done statistically. When data sets are small, the process of data reduction involves a more direct assessment of the quality of individual points. Because of the uneven distribution of the data, all data sets are gridded using the Kriging method.

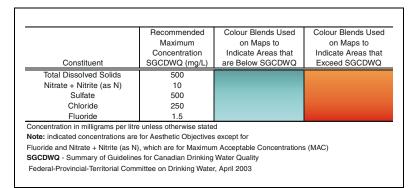
The final definition of the individual surfaces becomes an iterative process involving the plotting of the surfaces on cross-sections and the adjusting of control points to fit with the surrounding data.

4.3 Hydrogeological Parameters

Water well records that indicate the depths to the top and bottom of their completion interval are compared digitally to the spatial distribution of the various geological surfaces. This procedure allows for the determination of the aquifer in which individual water wells are completed. When the completion depth of a water well cannot be established, the data from that water well are not used in determining the distribution of hydraulic parameters.

After the water wells are assigned to a specific aquifer, the parameters from the water well records are assigned to the individual aquifers. The parameters include non-pumping (static) water level (NPWL), apparent transmissivity, and apparent water well yield. The NPWL given on the water well record is usually the water level recorded when the water well was drilled, measured prior to the initial aquifer test. In areas where groundwater levels have since fallen, the NPWL may now be lower and accordingly, the potential apparent yield would be reduced. The total dissolved solids, sulfate, chloride and total hardness concentrations from the chemical analyses of the groundwaters are also assigned to applicable aquifers. In addition, chemical parameters of Nitrate + Nitrite (as N) are assigned to surficial aquifers and fluoride is assigned to Upper Bedrock Aquifer(s). Nitrate + Nitrite (as N) concentrations are often related to water-well-specific data and may not indicate general aquifer conditions.

Once the values for the various parameters of the individual aquifers are established, the spatial distribution of these parameters must be determined. The distribution of individual parameters involves the same process as the distribution of geological surfaces. This means establishing a representative data set and then preparing a grid. The representative data set included using the available data from townships 041 to 050, ranges 16 to 22, W4M, plus a buffer area of at least 5,000 metres. Even when only limited data are available, grids are prepared. However, the grids prepared from the limited data must be used with extreme caution because the gridding process can be unreliable; for the maps, the areas with little or no data are identified.


On some maps, values are posted as a way of showing anomalies to the underlying grid or as a means of emphasizing either the lack of sufficient data or areas where there is concentrated hydrogeological data control.

4.4 Maps and Cross-Sections

Once grids for geological surfaces have been prepared, various grids need to be combined to establish the extent and thickness of individual geologic units. For example, the relationship between an upper bedrock unit and the bedrock surface must be determined. This process provides both the outline and the thickness of the geologic unit.

Once the appropriate grids are available, the maps are prepared by contouring the grids. For the Upper Bedrock Aquifer(s) where areas of sufficient data are not available from the groundwater database, prepared maps have been masked with a solid faded pink colour to indicate these areas. These masks have been added to the Middle Horseshoe Canyon, the Lower Horseshoe Canyon, the Oldman and the Bearpaw aquifers. Appendix A includes page-size maps from the text, plus additional page-size maps and figures that support the discussion in the text. A list of maps and figures that are included on the CD-ROM is given in Appendix B.

Blue hues have been chosen to represent map areas where the chemical parameters are below the Summary of Guidelines for Canadian Drinking Water Quality (SGCDWQ) and orange hues have been chosen to represent map areas where the chemical parameters are above the SGCDWQ.

Cross-sections are prepared by first choosing control points from the database along preferred lines of section. Data from these control points are then obtained from the database and placed in an AutoCAD drawing with an appropriate vertical exaggeration. The data placed in the AutoCAD drawing include the geo-referenced lithology, completion intervals and non-pumping water levels. Data from individual geologic units are then transferred to the cross-section from the digitally prepared surfaces.

Once the technical details of a cross-section are correct, the drawing file is moved to the software package CorelDraw! for simplification and presentation in a hard-copy form. Eight cross-sections are presented in Appendix A of this report and as poster-size drawings forwarded with this report; only two (G-G' and A-A') are included in the text of this report. The cross-sections are also included on the CD-ROM; page-size maps of the poster-size cross-sections are included in Appendix D of this report.

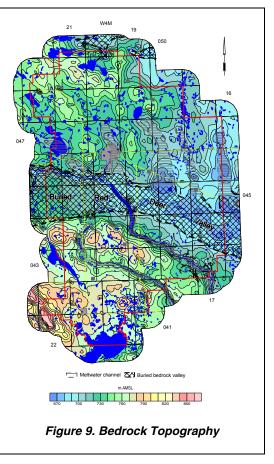
4.5 Software

The files on the CD-ROM have been generated from the following software:

- Acrobat 5.0
- AquaChem 3.6
- ArcView 3.2
- AutoCAD 2004
- CorelDraw! 12.0
- Grapher 3
- Microsoft Office 2003
- Surfer 8

5 AQUIFERS

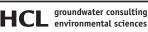
5.1 Background


An aquifer is a permeable rock unit that is saturated. In this context, rock refers to subsurface materials, such as sand, gravel, sandstone and coal. If the NPWL is above the top of the rock unit, this type of aquifer is a confined or artesian aquifer. If the rock unit is not entirely saturated and the water level is below the top of the rock unit, this type of aquifer is a water-table aquifer. These types of aquifers occur in one of two general geological settings in the County. The first geological setting includes the sediments that overlie the bedrock surface. In this report, these sediments are referred to as the surficial deposits. The second geological setting includes aquifers in the upper bedrock. The geological settings, the nature of the deposits making up the aquifers within each setting, the expected yield of water wells completed in aquifer(s) within different geologic units, and the general chemical quality of the groundwater associated with each setting are reviewed separately.

5.2 Aquifers in Surficial Deposits

The surficial deposits are the sediments above the bedrock surface. These include pre-glacial materials, which were deposited before glaciation, and materials deposited directly or indirectly as a result of glaciation. The *lower surficial deposits* include pre-glacial fluvial ¹³ deposits. The *upper surficial deposits* include the traditional glacial sediments of till¹⁴ and ice-contact deposits. Pre-glacial materials are expected to be present in association with linear bedrock lows. Meltwater channels are associated with glaciation.

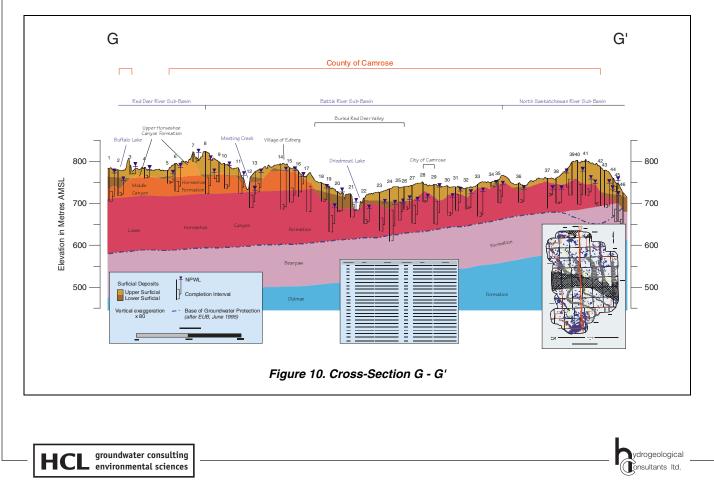
5.2.1 Geological Characteristics of Surficial Deposits


While the surficial deposits are treated as one hydrogeologic unit, they consist of three hydraulic units. The first unit is the preglacial sand and gravel deposits of the lower surficial deposits. These deposits are mainly saturated. The second and third hydraulic units are associated with the sand and gravel deposits in the upper surficial deposits. The sand and gravel deposits in the upper surficial deposits occur mainly as pockets. The second hydraulic unit is the saturated part of these sand and gravel deposits; the third hydraulic unit is the unsaturated part of these deposits that occur close to ground surface. For a graphical depiction of the above description, please refer to Figure 6, page 10 and to page A-11. While the unsaturated deposits are not technically an aquifer, they are significant as they provide a pathway for soluble contaminants to move downward into the groundwater. Because of

the significance of the shallow sand and gravel deposits, they have been mapped where they are present within one metre of the ground surface and are referred to as the "first sand and gravel".

The base of the surficial deposits is the bedrock surface, represented by the bedrock topography as shown above in Figure 9 and on page A-22. Regionally, the bedrock surface varies between 650 and 890 metres AMSL. The lowest elevations occur in the buried bedrock valleys and meltwater channels.

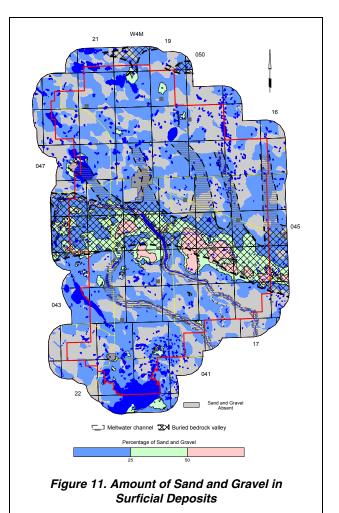
¹³ See glossary ¹⁴ See glossary


Over the majority of the County, the surficial deposits are less than 45 metres thick (see CD-ROM). The exceptions are mainly in association with areas where buried bedrock valleys and meltwater channels are present, where the deposits can have a thickness of more than 45 metres.

The Buried Red Deer Valley is the main linear bedrock low in the County; two unnamed bedrock valleys are present in the northern parts of the study area and are tributaries to the Buried Vegreville Valley present in Beaver County. The Buried Red Deer Valley is present in the central part of the County in parts of townships 043 to 046, and extends east-southeasterly to the County border. The Valley ranges from approximately nine to 15 kilometres wide, with local bedrock relief being less than 60 metres. Sand and gravel deposits can be expected in association with the bedrock low, but the thickness of the sand and gravel deposits is expected to be mainly less than 15 metres (see page A-23).

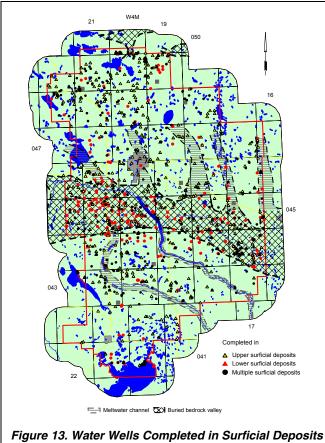
The lower surficial deposits are composed mostly of fluvial and lacustrine deposits. Lower surficial deposits occur over the County, but mainly in linear bedrock lows. The total thickness of the lower surficial deposits is mainly less than 30 metres, but can be more than 35 metres in the linear bedrock lows (see CD-ROM). The lowest part of the lower surficial deposits includes pre-glacial sand and gravel deposits. These deposits would generally overlie the bedrock surface in the Buried Red Deer Valley, as shown below on Cross-Section G-G' and page A-20. The lowest sand and gravel deposits are of fluvial origin, are usually less than ten metres thick and may be discontinuous (see CD-ROM).

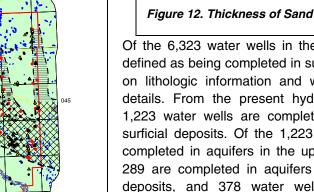
In the County, there are numerous linear bedrock lows that trend mainly northwest to southeast and are indicated as being of meltwater origin. Because sediments associated with the lower surficial deposits are indicated as being present in parts of the meltwater channels, it is possible that the meltwater channels were originally tributaries to the Buried Red Deer Valley. The two major meltwater channels south of the Buried Red Deer Valley have been outlined by Shetsen (1990).


The lower sand and gravel deposits are composed of fluvial deposits. Lower sand and gravel deposits are identified mainly in association with linear bedrock lows, as shown below on Cross-Section G-G'. In these areas, the total thickness of the lower sand and gravel deposits can be more than ten metres (see CD-ROM).

The upper surficial deposits are either directly or indirectly a result of glacial activity. The deposits include till, with minor sand and gravel deposits of meltwater origin, which are expected to occur mainly as isolated pockets. The thickness of the upper surficial deposits is mainly less than 30 metres. Upper surficial deposits are present throughout most of the County (see CD-ROM). The upper sand and gravel deposits are mainly less than 15 metres thick (see CD-ROM).

Sand and gravel deposits can occur throughout the surficial deposits. The total thickness of sand and gravel deposits is generally less than five metres but can be more than five metres in association with linear bedrock lows.


The combined thickness of all sand and gravel deposits has been determined as a function of the total thickness of the surficial deposits. Over approximately 75% of the County where sand and gravel deposits are present, the sand and gravel deposits are less than 25% of the total thickness of the surficial deposits, as shown on the adjacent figure. The areas where sand and gravel deposits constitute more than 25% of the total thickness of the surficial deposits are mainly in the Buried Red Deer Valley.



5.2.2 Sand and Gravel Aquifer(s)

The main aguifers in the surficial materials are sand and gravel deposits. In order for a sand and gravel deposit to be an aquifer, it must be saturated; if not saturated, a sand and gravel deposit is not an aquifer. The top of the surficial aguifers has been determined from the nonpumping water level in water wells that are less than 20 metres deep. The base of the surficial deposits is the bedrock surface.

Since the Sand and Gravel Aquifer(s) are not present everywhere, the actual aquifer that is developed at a given location is usually dictated by the aguifer that is present. Over 50% of the County, the sand and gravel deposits are not present, or if present, are not saturated; these areas are designated as grey on the adjacent map. In the County, the thickness of the Sand and Gravel Aguifer(s) is generally less than five metres, but can be more than five metres in linear bedrock lows, as shown in Figure 12, in Appendix A and on the CD-ROM.

completed in aquifers in the upper surficial deposits, 289 are completed in aguifers in the lower surficial deposits, and 378 water wells are completed in multiple surficial aquifers. This number of water wells (1,223) is four times the number (305) determined to be completed in aquifers in the surficial deposits, based on lithologies given on the water well drilling reports. The larger number is obtained by comparing the elevation of the reported depth of a water well to the elevation of the bedrock surface at the same location. For example, if only the depth of a water well is known, the elevation of the completed depth can be calculated. If the elevation of the completed depth is

Meltwater channel A Buried bedrock


W4M

21

above the elevation of the bedrock surface determined from the gridded bedrock topographic surface at the same location, then the water well is considered to be completed in an aquifer in the surficial deposits. Water wells completed in the lower surficial deposits are mainly in the linear bedrock lows, and water wells completed in

Figure 12. Thickness of Sand and Gravel Aquifer(s) Of the 6,323 water wells in the database, 305 were defined as being completed in surficial aquifers, based on lithologic information and water well completion details. From the present hydrogeological analysis, 1,223 water wells are completed in aquifers in the surficial deposits. Of the 1,223 water wells, 556 are

Page 18

the upper surficial deposits are often in the linear bedrock lows but are also located throughout the County, as shown on the previous page in Figure 13.

In the County, there are 216 records for surficial water wells with apparent yield data, which is 18% of the 1,223 surficial water wells. Fifty-six (26%) of the 216 water wells completed in the Sand and Gravel Aquifer(s) have apparent yields that are less than ten m³/day, 120 (56%) have apparent yield values that range from 10 to 100 m³/day, and 40 (18%) have apparent yields that are greater than 100 m³/day. In addition to the 216 records for surficial water wells with

	No. of Number of Water Wells					
	Water Wells	with Apparent Yields				
	with Values for	<10	10 to 100	>100		
Aquifer	Apparent Yield (*)	m³/day	m³/day	m³/day		
Upper Surficial	40	11	21	8		
Lower Surficial	64	14	40	10		
Multiple Completions	112	31	59	22		
Totals	216	56	120	40		

apparent yield data, there are ten records that indicate that the water test hole is "dry". In order to depict a more accurate yield map, an apparent yield of 0.1 m³/day was assigned to each of the ten "dry" water test holes prior to gridding.

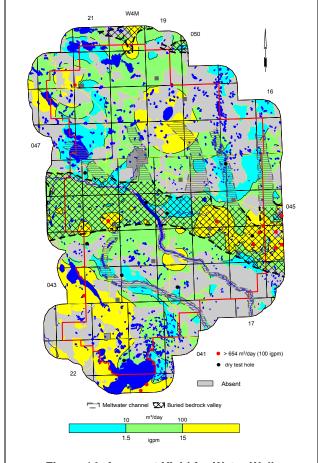
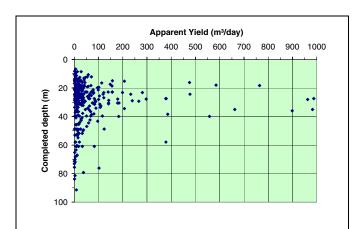



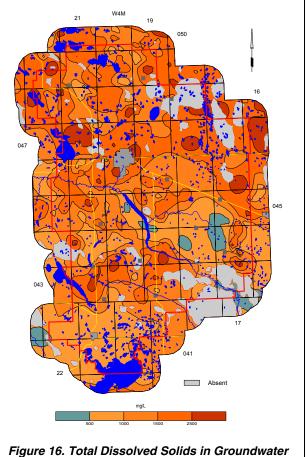
Figure 14. Apparent Yield for Water Wells Completed in Sand and Gravel Aquifer(s)

The adjacent map shows expected yields for water wells completed in the Sand and Gravel Aquifer(s).

Based on the aquifers that have been developed by existing water wells, these data show that water wells with yields of more than 654 m³/day (100 igpm) from the Sand and Gravel Aquifer(s) can be expected in the Buried Red Deer Valley in the eastern part of the County where the Sand and Gravel Aquifer(s) are present.

Apparent yields for water wells completed in the Sand and Gravel Aquifer(s) vary significantly over the County both with location and with depth. As Figure 15 shows, most apparent yields are less than 100 m³/day and the majority of the water wells completed in the Sand and Gravel Aquifer(s) are less than 60 metres deep. All but one water well that have apparent yields of greater than 150 m³/day are less than 40 metres deep. The exception is a water well in 04-10-050-20 W4M, which is completed in the Lower Sand and Gravel Aquifer.

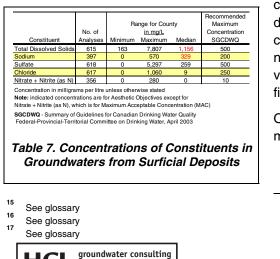
Page 20


5.2.2.1 Chemical Quality of Groundwater from Surficial Deposits

Groundwaters from an aquifer in the surficial deposits can be expected to be chemically hard, having a total hardness of at least a few hundred mg/L, and a dissolved iron concentration such that the groundwater must be treated before being used for domestic needs.

In the County of Camrose, groundwaters from the surficial aquifers mainly have a chemical hardness of greater than 100 mg/L (see CD-ROM).

The Piper tri-linear diagram¹⁵ for the surficial deposits (page A-32) shows that the groundwaters from the surficial deposits are a bicarbonate or sulfate-type with no dominant cation. More than 90% of the groundwaters from the surficial deposits have a TDS concentration of more than 500 mg/L. Fifty-five percent of the groundwaters from the surficial deposits are reported to have dissolved iron concentrations of more than the aesthetic objective (AO) of 0.3 mg/L. However, many iron analyses results are questionable due to varying sampling and analytical methodologies.


In some areas, the groundwater chemistry of the surficial aquifers is such that sulfate is the major anion¹⁶. The groundwaters with elevated levels of sulfate generally occur in areas where there are elevated levels of total dissolved solids. There are very few groundwaters from the surficial deposits with appreciable concentrations of the chloride ion; in more than 90% of the samples analyzed for surficial deposits in the County, the chloride ion concentration is less than 100 mg/L (see CD-ROM).

from Surficial Deposits

In the County, the Nitrate + Nitrite (as N) concentrations in the groundwaters from the surficial deposits exceed the maximum acceptable concentrations (MAC) of ten mg/L in 27 of the 356 groundwater samples analyzed (up to about 1986). A plot of Nitrate + Nitrite (as N) in surficial aquifers is on the accompanying CD-ROM.

The minimum, maximum and median¹⁷ concentrations of TDS, sodium, sulfate, chloride and Nitrate + Nitrite (as N) in the groundwaters from water wells completed in the surficial deposits in the County have been compared to the Summary of Guidelines for Canadian Drinking Water Quality (SGCDWQ) in the adjacent table. The range of

environmental sciences

concentrations shown in Table 7 is from values in the groundwater database; however, the extreme minimum and maximum concentrations generally represent less than 0.2% of the total number of analyses and should have little effect on the median values. These extreme values are not used in the preparation of the figures.

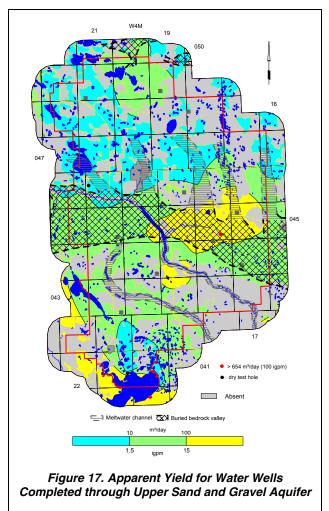
Of the five constituents that have been compared to the SGCDWQ, median concentrations of TDS and sodium exceed the guidelines.

5.2.3 Upper Sand and Gravel Aquifer

The Upper Sand and Gravel Aquifer includes saturated sand and gravel deposits in the upper surficial deposits. Typically, these aquifers are present within the surficial deposits at no particular depth. Saturated sand and gravel deposits in the upper surficial deposits are not usually continuous over large areas but are expected over approximately 50% of the County.

5.2.3.1 Aquifer Thickness

The thickness of the Upper Sand and Gravel Aquifer is a function of two parameters: (1) the elevation of the nonpumping water-level surface associated with the surficial deposits; and (2) the depth to the bedrock surface or the depth to the top of the lower surficial deposits when present. In the County, the thickness of the Upper Sand and Gravel Aquifer is mainly less than five metres but can be more than 15 metres in the buried bedrock valleys.


5.2.3.2 Apparent Yield

The permeability of the Upper Sand and Gravel Aquifer can be high. The high permeability combined with significant thickness leads to an extrapolation of high yields for water wells; however, because the sand and gravel deposits occur mainly as hydraulically discontinuous pockets, the long-term yields of the water wells are expected to be less than the apparent yields. The long-term yields for water wells completed through this Aquifer are expected to be mainly less than those shown on the adjacent figure.

Where the Upper Sand and Gravel Aquifer is absent and where the yields are low, the development of water wells for the domestic needs of single families may not be possible from this Aquifer, and construction of a water supply well into the underlying bedrock may be the only alternative, provided that yields and quality of groundwater from the bedrock aquifer(s) are suitable.

Figure 17 indicates that in more than 80% of the County, water wells completed through the Upper Sand and Gravel Aquifer are expected to have apparent yields that are less than 100 m³/day. In the County, there are two "dry" water test holes completed in the Upper Sand and Gravel Aquifer.

In the County, there are 64 licensed and registered water wells that are completed through the Upper Sand and Gravel Aquifer, for a total authorized diversion of 675 m³/day (Table 3, page 7), with a median authorized

amount of 2.1 m³/day. Twenty-two of the 64 licences and registrations for water wells completed through the Upper Sand and Gravel Aquifer could be linked to a water well in the AENV groundwater database.

The highest authorized groundwater use is for a water source well completed in the Upper Sand and Gravel Aquifer in 12-35-043-21 W4M that is licensed to divert 206 m³/day for dewatering purposes and a water source well in SE 32-046-20 W4M that is licensed to divert 169 m³/day for commercial purposes.

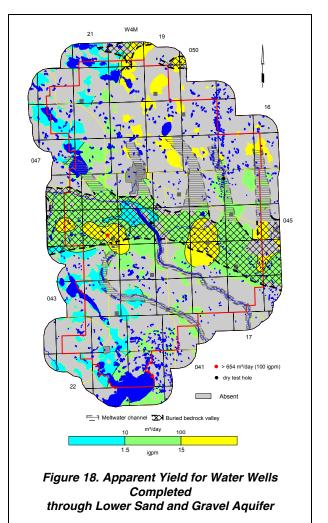
5.2.4 Lower Sand and Gravel Aquifer

The Lower Sand and Gravel Aquifer is a saturated sand and gravel deposit that occurs at the base of the surficial deposits in the deeper part of the linear bedrock lows.

5.2.4.1 Aquifer Thickness

The thickness of the Lower Sand and Gravel Aquifer is mainly less than ten metres (see CD-ROM).

5.2.4.2 Apparent Yield

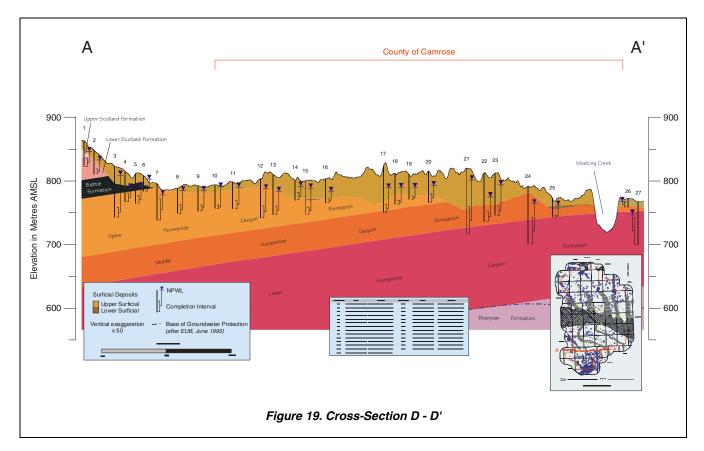

The apparent yield values for individual water wells completed through the Lower Sand and Gravel Aquifer range from less than ten to greater than 100 m³/day, and have a median apparent yield of 30 m³/day. Water wells with yields of greater than 100 m³/day are expected to be in areas of linear bedrock lows, as shown on Figure 18.

In the County, there are two "dry" water test holes completed in the Lower Sand and Gravel Aquifer.

In the County, there are 57 licensed and registered water wells that are completed through the Lower Sand and Gravel Aquifer, for a total authorized diversion of 581 m³/day (Table 3, page 7), with a median authorized amount of three m³/day. Thirty-two of the 57 licences and registrations for water wells completed through the Lower Sand and Gravel Aquifer could be linked to a water well in the AENV groundwater database.

Groundwater diversion for municipal purposes represents 68% (395 m³/day) of the total 581 m³/day authorized for water wells completed in the Lower Sand and Gravel Aquifer; all 395 m³/day is diverted by the villages of Bawlf (152 m³/day), New Norway (132 m³/day) and Rosalind (111 m³/day).

From 1960 to 1993, seven test holes have been drilled in Section 12 or NW 11-045-21 W4M for the Village of New Norway; of which six of the seven have been completed in the Lower Sand and Gravel Aquifer with a completed depth of less than 30 metres below ground surface. Aquifer tests conducted with the water test holes indicated apparent


yields ranging from a low of 85 m³/day to a high of 1,000 m³/day. An extended aquifer test (three days of pumping and 13 hours of recovery) conducted by HCL with Water Test Hole (WTH) No. 4-78 in 12-11-045-21 W4M indicated a long-term yield of 136 m³/day based on an effective transmissivity of 43.5 metres squared per day (m²/day) (HCL, February 1981b). The Village of New Norway currently receives it groundwater supply from two water wells completed in the Lower Sand and Gravel Aquifer.

A chemical analysis of a groundwater sample collected in April 1978 from WTH No. 4-78 indicates the groundwater is a sodium-bicarbonate type, with a TDS concentration of 1,057 mg/L, a sulfate concentration of 290 mg/L, a chloride concentration of 82 mg/L, and a Nitrate + Nitrite (as N) concentration of less than 0.2 mg /L (HCL, February 1981b).

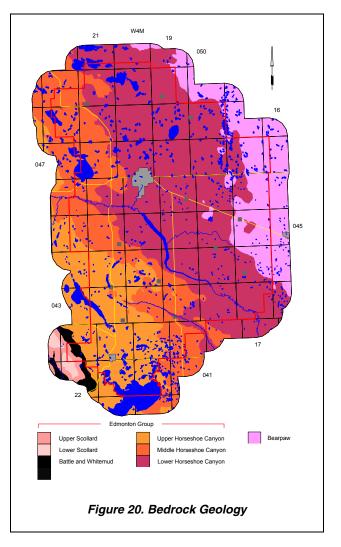
5.3 Bedrock

5.3.1 Bedrock Aquifers

The upper bedrock includes formations that are generally less than 200 metres below the bedrock surface. In the County, the upper bedrock includes the Edmonton Group (Scollard, Battle and Whitemud, and Horseshoe Canyon formations) and the Bearpaw Formation, as shown below on cross-section A-A' (see page A-14). Some of this bedrock contains saturated rocks that are permeable enough to transmit groundwater for a specific need. Water wells completed in bedrock aquifers usually do not require water well screens, although some of the sandstones may be friable¹⁸ and water well screens are a necessity.

Cross-section D-D' indicates that the Base of Groundwater Protection mainly coincides with the top of the Bearpaw Formation. The depth to the BGP is given on page 9 of this report, in Appendix A, and on the CD-ROM.

18	See glossary
	See yiussaiy

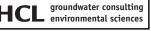

5.3.2 Geological Characteristics

The upper bedrock in the County study area includes the Edmonton Group and the Bearpaw Formation. The Edmonton Group includes the Upper and Lower Scollard formations, the Battle and Whitemud formations, and the Upper, Middle and Lower Horseshoe Canyon formations. The adjacent bedrock geology map, showing the subcrop of different geological units, has been prepared in part from the interpretation of geophysical logs related to oil and gas activity.

The Scollard Formation has a maximum thickness of 80 metres and has two separate designations: Upper and Lower. The Upper Scollard consists mainly of sandstone, siltstone, shale and coal seams or zones. The Lower Scollard is composed mainly of shale and sandstone.

There will be no direct review of the Upper and Lower Scollard formations in the text of this report; there are insufficient or no hydrogeological data within the County to prepare meaningful maps. The only maps associated with the Upper and Lower Scollard formations to be included on the CD-ROM will be structure-contour maps.

Beneath the Scollard Formation are two formations having a maximum thickness of 30 metres; the two are the Battle and Whitemud formations. The Battle Formation is composed mainly of claystone, tuff, shale and bentonite, and includes the Kneehills Member, a 2.5- to 30-cm-thick tuff bed. The Whitemud Formation is composed mainly of shale, siltstone, sandstone and bentonite. The Battle and Whitemud formations are significant geologic markers, and were used in the preparation of various geological



surfaces within the bedrock. Because of the ubiquitous nature of the bentonite in the Battle and Whitemud formations, there is very little significant permeability within these two formations and there will be no direct review of the Battle and Whitemud formations.

The Horseshoe Canyon Formation is the lower part of the Edmonton Group. In the County, the Horseshoe Canyon Formation has a maximum thickness of 295 metres and has three separate designations: Upper, Middle and Lower. In the County of Camrose, the Upper Horseshoe Canyon has a maximum thickness of 95 metres; the Middle Horseshoe Canyon has a maximum thickness of 50 metres, and the Lower Horseshoe Canyon has a maximum thickness.

The Horseshoe Canyon Formation consists of deltaic¹⁹ and fluvial sandstone, siltstone and shale with interbedded coal seams, bentonite and thin nodular beds of limestone and ironstone. Because of the low-energy environment in which deposition occurred, the sandstones, when present, tend to be finer grained. The lower 60 to 70 metres and the upper 30 to 50 metres of the Horseshoe Canyon Formation can include coarser grained sandstone deposits.

¹⁹ See glossary

The Bearpaw Formation is in the order of 100 metres thick. The Bearpaw Formation includes transgressive, shallow marine (shoreface) and open marine facies²⁰ deposits. The Bearpaw Formation consists of marine shale, siltstone and minor sandstone layers except in some areas where the thickness of the sandstone layers can be significant. The Bearpaw Formation "represents the final widespread marine unit in the Western Canada Foreland Basin" (Catuneanu et al, 1997).

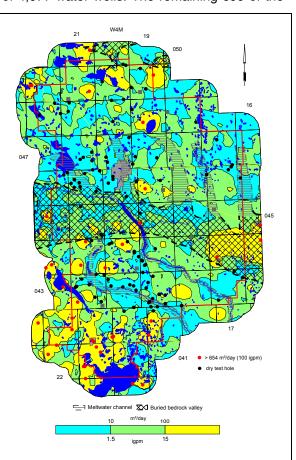
The Oldman Formation underlies the Bearpaw Formation and has a maximum thickness of 130 metres. The Oldman Formation is composed of continental deposits, sandstone, siltstone, shale and coal. The Oldman Formation is the upper part of the Belly River Group.

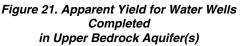
5.3.3 Upper Bedrock Completion Aquifer(s)

	No. of Bedrock
Geologic Unit	Water Wells
Lower Scollard	1
Battle and Whitemud	0
Upper Horseshoe Canyon	446
Middle Horseshoe Canyon	558
Lower Horseshoe Canyon	2,662
Bearpaw	407
Oldman	4
Multiple Completions	699
Total	4,776

Table 8. Completion Aquifer forUpper Bedrock Water Wells

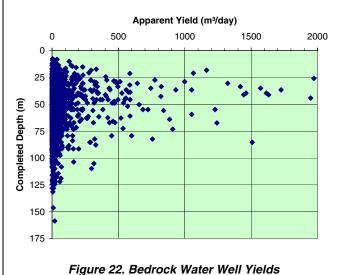
Of the 6,323 water wells in the database, 2,174 were defined as being completed below the top of bedrock, based on lithologic information and water well completion details. However, at least a reported completion depth is available for 4,776 water wells completed below the bedrock surface. Assigning a water well to a specific geologic unit is possible only if the completion interval is identified. In order to make use of additional information within the groundwater database, it was assumed that the completion interval was the bottom 20% of the total completed depth of a water well. With this assumption, it has been possible to designate the specific bedrock aquifer of completion for an additional 1,903 bedrock water wells, giving a total of 4,077 water wells. The remaining 699 of the


total 4,776 upper bedrock water wells


are identified as being completed in more than one bedrock aquifer, as shown in Table 8. The bedrock water wells are mainly completed in the Lower Horseshoe Canyon Aquifer.

There are 1,443 records for bedrock water wells that have apparent yield values, which is 30% of the 4,776 bedrock water wells in the County.

Nearly 90% of the water wells completed in the Upper Bedrock Aquifer(s) have apparent yield values of less than 100 m³/day, with a median apparent yield of 13 m³/day. Many of the areas with yields of more than 100 m³/day are in the southwestern part of the County where the Upper Horseshoe Canyon is the upper bedrock, and in association with the buried bedrock valleys. These higher yield areas may identify areas of increased permeability resulting from the weathering process.


In addition to the 1,443 records for bedrock water wells with apparent yield values, there are 117 records that indicate that the water well/water test hole is "dry", or abandoned with "insufficient water". In order to depict a more accurate yield map, an apparent yield of 0.1 m³/day was assigned to the 117 "dry" water test holes prior to gridding.

20 See glossary

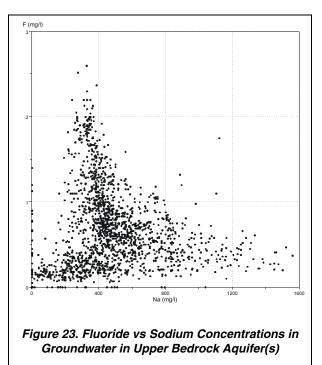
Of the 1,443 water well records with apparent yield values, 1,147 have been assigned to aquifers associated with specific geologic units. Six hundred and thirty (43.7%) of the 1,443 water wells completed in bedrock aquifers have apparent yields that are less than ten m³/day, 644 (44.6%) have apparent yield values that range from 10 to 100 m³/day, and 169 (11.7%) have apparent yield values that are greater than 100 m³/day, as shown in Table 9.

vs	C	or	nı	2	leted	De	enth	
13			''P		eleu		spur	

	No. of Water Wells with Values for	Number of Water Wells with Apparent Yields <10 10 to 100 >100			
Aquifer	Apparent Yield (*)	m³/day	m³/day	m³/day	
Lower Scollard	1	0	0	1	
Battle and Whitemud	0	0	0	0	
Upper Horseshoe Canyon	183	13	94	76	
Middle Horseshoe Canyon	154	70	70	14	
Lower Horseshoe Canyon	720	358	310	52	
Bearpaw	89	42	45	2	
Oldman	1	1	0	0	
Multiple Completions	296	146	125	25	
Totals	1,443	630	644	169	

does not include dry test holes

Table 9. Apparent Yields of Bedrock Aquifers


Apparent yields for water wells completed in the Upper Bedrock Aquifer(s) vary significantly over the County both with location and with depth. As the graph shows, most apparent yields are less than 100 m³/day and the majority of the water wells are less than 75 metres deep. All but one water well with apparent yields of greater than 1,000 m³/day are less than 75 metres deep. The exception is a water well in NW 27-044-20 W4M, and is completed in the Lower Horseshoe Canyon Aquifer.

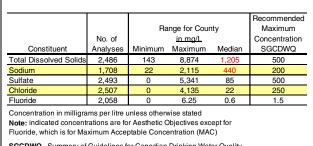
5.3.4 Chemical Quality of Groundwater

The Piper tri-linear diagram for Upper Bedrock Aquifer(s) (page A-32) shows that groundwaters from bedrock aquifers are mainly sodium-bicarbonate or sodium-sulfate-type waters; the majority of these groundwaters have a sodium ion concentration that exceeds 200 mg/L. Because the sodium concentration can be elevated, the groundwater can pose a risk to people on low sodium diets.

In the County, approximately 16% of the groundwater samples from Upper Bedrock Aquifer(s) have fluoride concentrations that are too low (less than 0.5 mg/L) to meet the recommended daily needs of people. Approximately 23% of the groundwater samples from the entire County are between 0.5 and 1.5 mg/L and approximately 61% exceed the MAC for fluoride of 1.5 mg/L, with fluoride concentrations of greater than five mg/L occurring in the western part of the County (see CD-ROM).

The fluoride concentrations in the groundwaters appear to be a function of the sodium concentration. Below a sodium concentration of 220 mg/L, there is generally very little fluoride in the groundwater. When the sodium concentration reaches 230 mg/L, the maximum fluoride

concentration can increase dramatically. As the sodium concentration increases, the maximum solubility of fluoride decreases and once the sodium concentration reaches 500 mg/L the maximum solubility of fluoride is below the MAC of 1.5 mg/L, as shown above in Figure 23 and on page A-37.


The TDS concentrations in the groundwaters from the Upper Bedrock Aquifer(s) range from less than 500 mg/L to more than 2,000 mg/L, with most of the groundwaters with higher TDS concentrations occurring in the northern part of the County (see page A-35).

The relationship between TDS and sulfate concentrations shows that when TDS values in the groundwaters from the Upper Bedrock Aquifer(s) exceed 1,200 mg/L, the sulfate concentrations exceed 400 mg/L.

In the County, more than 80% of the chloride concentrations in the groundwaters from the Upper Bedrock Aquifer(s) are less than 250 mg/L.

In the County, there were 31 groundwater samples that had Nitrate + Nitrite (as N) concentrations that were greater than the SGCDWQ for the Upper Bedrock Aquifer(s). Approximately 85% of the total hardness values in the groundwaters from the Upper Bedrock Aquifer(s) are less than 200 mg/L.

The minimum, maximum and median concentrations of TDS, sodium, sulfate, chloride and fluoride in the groundwaters from water wells completed in the upper bedrock in the County have been compared to the SGCDWQ in Table 10. Of the five constituents compared to the SGCDWQ, median concentrations of TDS and sodium exceed the guidelines.

SGCDWQ - Summary of Guidelines for Canadian Drinking Water Quality Federal-Provincial-Territorial Committee on Drinking Water, April 2003

Table 10. Concentrations of Constituents in Groundwaters from Upper Bedrock Aquifer(s)

5.3.5 Upper Horseshoe Canyon Aquifer

The Upper Horseshoe Canyon Aquifer comprises the permeable parts of the Upper Horseshoe Canyon Formation that underlie the Battle Formation. The Upper Horseshoe Canyon Formation subcrops under the surficial deposits in the southwestern quarter of the County. Structure contours have been prepared for the top of the Formation. The structure contours show that the Upper Horseshoe Canyon Formation ranges in elevation from less than 730 to more than 810 metres AMSL and has a maximum thickness of 95 metres. The non-pumping water level in the Upper Horseshoe Canyon Aquifer is mainly downgradient to the southeast and southwest toward Beaver Lake and to the southeast toward Buffalo Lake.

5.3.5.1 Depth to Top

The depth to the top of the Upper Horseshoe Canyon Formation is variable, ranging from less than 25 metres at the eastern extent to more than 100 metres in the extreme western part of the County (page A-43).

5.3.5.2 Apparent Yield

The apparent yields for individual water wells completed through the Upper Horseshoe Canyon Aquifer range mainly from 10 to 100 m³/day, and have a median apparent yield value of 52 m³/day. There is one "dry" water test hole that is completed in the Upper Horseshoe Canyon Aquifer.

In the County, there are 107 licensed and registered groundwater users with water wells that are completed in the Upper Horseshoe Canyon Aquifer, for a total authorized diversion of 1,169 m³/day, an average authorized diversion of 11 m³/day. Of the 1,169 m³/day, the Town of Bashaw is licensed to divert 645 m³/day from three water supply wells. Fifty-nine of the 107 licensed and registered water wells could be linked to a water well in the AENV groundwater database.

Extended aquifer tests were conducted with WTH No. 1-79, WTH No. 2-79 and WTH No. 4-79 by HCL from April to August 1979 for the Town of Bashaw (HCL, Dec 1979). All three water test holes are completed in the Upper Horseshoe Canyon Aquifer. WTH Nos. 1-79 and 2-79 are completed at a depth of 40 metres below ground surface and WTH No. 4-79 has a completed depth of 67 metres below ground surface. The results of the aquifer tests indicated that WTH No. 1-79 has a longterm yield of 560 m³/day and WTH No. 4-79 has a longterm yield of 177 m³/day. Both WTH Nos. 1-79 (WSW No. 4) and 2-79 (WSW No. 5) are authorized to divert 275 m³/day and WTH No. 4-79 (WSW No. 3A) is

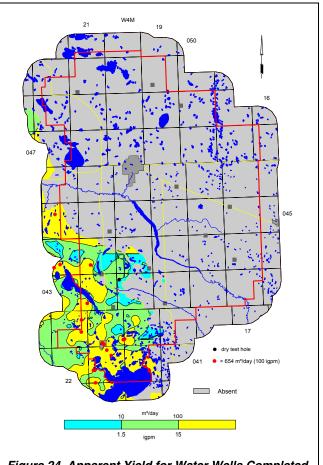


Figure 24. Apparent Yield for Water Wells Completed through Upper Horseshoe Canyon Aquifer

authorized to divert 95 m³/day. The effect on the water levels in nearby water wells by pumping WTH No. 1-79 continuously for 20 years at a rate of 560 m³/day was calculated to be a drawdown of less than five metres.

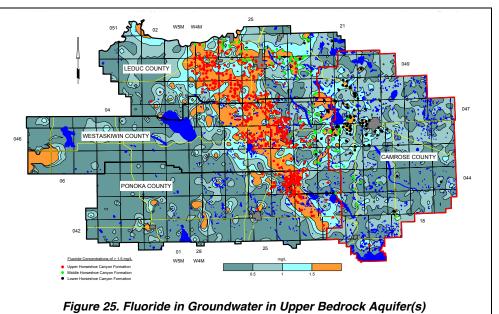
Figure 36 on page 44 indicates areas where changes in water levels in bedrock water wells may have occurred. The Town of Bashaw is in an area where the water level has oscillated between a water-level decline of less than five metres and a water-level rise of less than five metres.

5.3.5.3 Quality

The groundwaters from the Upper Horseshoe Canyon Aquifer are mainly a sodium-bicarbonate type, (see Piper diagram on CD-ROM). Total dissolved solids concentrations range from less than 500 to more than 1,000 mg/L (page A-45), with more than 95% of the groundwater values having TDS concentrations of greater than 500 mg/L. The sulfate concentrations range from less than 100 to more than 500 mg/L, with 70% of the groundwater samples having sulfate concentrations that range from 100 to 500 mg/L. The chloride concentrations range from less than ten to more than 100 mg/L, with 75% of the groundwater samples having chloride concentrations of less than ten mg/L. Nearly 75% of the groundwater samples have fluoride concentrations that are less than 0.5 mg/L.

A chemical analysis of a groundwater sample collected from the Town of Bashaw WSW No. 4 in 07-04-042-21 W4M in June 1979 indicated the groundwater is a sodium-bicarbonate type, with a TDS concentration of 946 mg/L, a sulfate concentration of 172 mg/L, a chloride concentration of 4 mg/L, and a fluoride concentration of 0.46 mg/L (HCL, Dec-1979).

Of the five constituents that have been compared to the SGCDWQ, the median values of TDS and sodium exceed the guidelines. The median concentrations of sulfate from water wells completed in the Upper Horseshoe Canyon


	No. of	Range for County in mg/L		All Bedrock	Recommended Maximum Concentration	
Constituent	Analyses	Minimum	Maximum	Median	Median	SGCDWQ
Total Dissolved Solids	141	160	3,118	933	1,205	500
Sodium	97	36.0	1,133	317	440	200
Sulfate	142	0	1325	169	85	500
Chloride	142	0	1484	4	22	250
Fluoride	117	0	2	0.3	0.6	1.5
Concentration in milligrams Note: indicated concentratio Fluoride, which is for Maxim	ns are for Aes um Acceptabl	thetic Object e Concentra	tives except fo tion (MAC)			
	delines for Ca		king Water Qı April 2002	uality		

Aquifer are greater than the median concentrations from water wells completed in all Upper Bedrock Aquifer(s).

A comparison was made of fluoride concentrations in the groundwaters from water wells in the County completed in Upper Bedrock Aquifer(s) with fluoride concentrations in the groundwaters from water wells in the adjacent counties of Leduc, Wetaskiwin and Ponoka. Groundwaters that report more than 1.5 mg/L of fluoride in water wells completed in the Horseshoe Canyon aquifers are shown by the coloured postings on the figure below. The comparison was made to determine if the trend of elevated fluoride concentrations in the Upper Horseshoe Canyon Aquifer shown below would extend into the County of Camrose. The data show that in the County of Camrose, fluoride concentrations of more than 1.5 mg/L are in water wells completed mainly in the Lower

Horseshoe Canyon Aquifer, as shown below in Figure 25 and on page A-36.

5.3.6 Middle Horseshoe Canyon Aquifer

The Middle Horseshoe Canyon Aquifer comprises the permeable parts of the Middle Horseshoe Canyon Formation, as defined for the present program. The Middle Horseshoe Canyon Formation is present under the surficial deposits in the southwestern third of the County. The structure contours show that the Middle Horseshoe Canyon Formation ranges in elevation from less than 680 to more than 780 metres AMSL and has a maximum thickness of 50 metres. The regional groundwater flow direction in the Middle Horseshoe Canyon Aquifer is mainly downgradient to the northward to the Battle River, and to the southwest and northeast toward Meeting Creek (see CD-ROM).

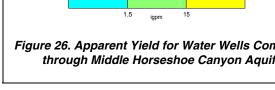
5.3.6.1 Depth to Top

The depth to the top of the Middle Horseshoe Canyon Formation is variable, ranging from less than 25 metres at the northeastern extent to more than 150 metres in the extreme southwestern part of the County (page A-46).

5.3.6.2 Apparent Yield

Ninety-one percent (140) of the 154 apparent yield values for individual water wells completed through the Middle Horseshoe Canyon Aquifer are less than 100 m³/day, of which 45% (70) apparent yield values are less than ten, and 45% (70) range from ten to 100 m³/day. The remaining 14 (9%) of the 154 apparent yield values are greater than 100 m³/day. In the County, there are ten "dry" water test holes completed in the Middle Horseshoe Canyon Aquifer.

Without the inclusion of the ten "dry" water test holes, the median apparent yield value for water wells completed in the Middle Horseshoe Canyon Aquifer is 13.4 m³/day. With the inclusion of the ten "dry" water test holes, the median apparent yield value is 11.4 m³/day.


There are 101 licensed and registered groundwater users that have water wells completed through the Middle Horseshoe Canyon Aquifer, for a total authorized diversion of 320 m³/day, an average authorized diversion of 3.2 m³/day. Of the 320 m³/day, the Village of Edberg is licensed to divert 44 m³/day from three water supply wells, and the Village of Ferintosh is licensed to divert a total of 41.1 m³/day from five water supply wells (see Section 6.5.4). Sixty of the 101 licensed and registered water wells could be linked to a water well in the AENV groundwater database.

5.3.6.3 Quality

The groundwaters from the Middle Horseshoe Canyon

Aquifer are mainly a sodium-bicarbonate or sodium-sulfate-type (see Piper diagram on CD-ROM), with 75% of the groundwater samples having TDS concentrations ranging from 500 to 1,500 mg/L (page A-48). Sixty percent of the sulfate concentrations in groundwaters from the Middle Horseshoe Canyon Aquifer are less than 500 mg/L. Nearly 90% of the chloride concentrations from the Middle Horseshoe Canyon Aquifer are less than 50 mg/L. Nearly 90% of the groundwater samples have fluoride concentrations that are less than 1.5 mg/L.

Figure 26. Apparent Yield for Water Wells Completed through Middle Horseshoe Canyon Aquifer

W4M

19

. 1

050

045

dry test hole n³/dav (100 igg

Insufficient data

A chemical analysis of a groundwater sample collected in December 1986 from one of the Village of Edberg's water supply wells in SE 14-044-20 W4M indicates the groundwater is a sodium-bicarbonate type, with a TDS concentration of 639 mg/L, a sulfate concentration of 60 mg/L, a chloride concentration of nine mg/L, and a fluoride concentration of 0.53 mg/L.

A chemical analysis of a groundwater sample collected in May 1997 from one of the Village of Ferintosh's water supply wells in 11-03-044-21 W4M indicates the groundwater is a sodium-bicarbonate type, with a TDS concentration of 851 mg/L, a sulfate concentration of 0.4 mg/L, a chloride concentration of 103 mg/L, and a fluoride concentration of 1.43 mg/L (AAFC-PFRA, 1998).

Of the five constituents that have been compared to the SGCDWQ, the median values of TDS and sodium exceed the guidelines. The median concentrations of sulfate in the Middle Horseshoe Canyon Aquifer are greater than the median concentrations from water wells completed in all Upper Bedrock Aquifer(s).

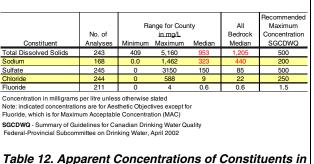


Table 12. Apparent Concentrations of Constituents in Groundwaters from Middle Horseshoe Canyon Aquifer

5.3.7 Lower Horseshoe Canyon Aquifer

The Lower Horseshoe Canyon Aquifer comprises the permeable parts of the Lower Horseshoe Canyon Formation that underlie the Middle Horseshoe Canyon Formation. The Lower Horseshoe Canyon Formation is present under the surficial deposits in most of the County. Structure contours have been prepared for the top of the Formation. The structure contours show that the Lower Horseshoe Canyon Formation ranges in elevation from less than 650 to more than 770 metres AMSL and has a maximum thickness of 130 metres. The non-pumping water level in the Lower Horseshoe Canyon Aquifer is mainly downgradient toward the north and northeast the Battle River, and to the south and north toward Meeting Creek.

5.3.7.1 Depth to Top

The depth to the top of the Lower Horseshoe Canyon Formation is variable, ranging from less than 25 metres at the northeastern extent to more than 200 metres in the extreme southwestern part of the County (page A-49).

5.3.7.2 Apparent Yield

Fifty percent (358) of the 720 apparent yield values for individual water wells completed through the Lower Horseshoe Canyon Aquifer are less than ten m³/day; 43% (310) range from ten to 100 m³/day, and 7% (52) are greater than 100 m³/day. There are 75%) "dry" water test holes that are completed in the Lower Horseshoe Canyon Aquifer in the County.

Without the inclusion of the 75 "dry" water test holes, the median apparent yield value for water wells completed in the Lower Horseshoe Canyon Aquifer is $10.3 \text{ m}^3/\text{day}$. With the inclusion of the 75 "dry" water test holes, the median apparent yield value is $8.4 \text{ m}^3/\text{day}$.

There are 396 licensed and registered groundwater users that have water wells completed through the Lower Horseshoe Canyon Aquifer, for a total authorized diversion of 1,240 m³/day, an average authorized diversion of 3.1 m³/day. The highest authorized groundwater use of 50 m³/day is for a water supply well in SE 03-048-20 W4M with a completed depth of 21.3 metres below ground surface.

Of the 396 licensed and registered groundwater users, 189 could be linked to water wells in the AENV groundwater database.

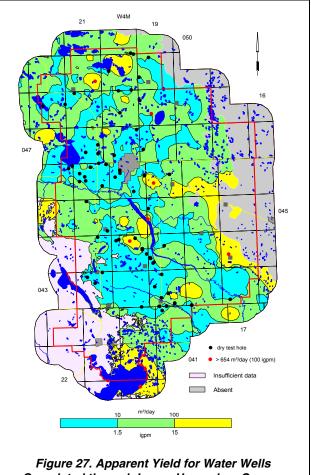


Figure 27. Apparent Yield for Water Wells Completed through Lower Horseshoe Canyon Aquifer

5.3.7.3 Quality

The groundwaters from the Lower Horseshoe Canyon Aquifer are mainly a sodium-bicarbonate or sodiumsulfate-type (see Piper diagram on CD-ROM), with 75% of the groundwater samples having TDS concentrations ranging from 500 to 2,000 mg/L (page A-51). Nearly 80% of the sulfate concentrations in groundwaters from the Lower Horseshoe Canyon Aquifer are less than 500 mg/L. Sixty percent of the chloride concentrations from the Lower Horseshoe Canyon Aquifer are less than 50 mg/L. Nearly 60% of the groundwater samples have fluoride concentrations that range from 0.5 to 1.5 mg/L.

A groundwater sample was collected for chemical analysis during the aquifer test with one of the two licensed water wells that supplies groundwater at Miquelon Lake Provincial Park in 08-33-049-20 W4M in February 1980. The analysis indicated the groundwater is a sodium-bicarbonate type, with a TDS concentration of 757 mg/L, a sulfate concentration of < 5 mg/L, a chloride concentration of 25 mg/L, and a fluoride concentration of 0.11 mg/L (HCL, Feb-1981a).

Of the five constituents that have been compared to the SGCDWQ, the median values of TDS and sodium exceed the guidelines. The median concentrations of TDS, sodium, chloride and fluoride from water wells completed in the Lower Horseshoe Canyon Aquifer are greater than the median concentrations from water wells completed in all Upper Bedrock Aquifer(s).

	No. of		inge for Cour		All Bedrock	Recommended Maximum Concentration
Constituent	Analyses	Minimum	Maximum	Median	Median	SGCDWQ
Total Dissolved Solids	1553	143	8,874	1288	1,205	500
Sodium	1154	0.0	2,111	454	440	200
Sulfate	1563	0	5341	55	85	500
Chloride	1571	0	3319	31	22	250
Fluoride	1291	0	6	0.7	0.6	1.5
Concentration in milligrams Note: indicated concentratio Fluoride, which is for Maxim	ns are for Aes	thetic Object	ives except fo	or		
SGCDWQ - Summary of Guidelines for Canadian Drinking Water Quality Federal-Provincial Subcommittee on Drinking Water, April 2002						

 Table 13. Apparent Concentrations of Constituents in

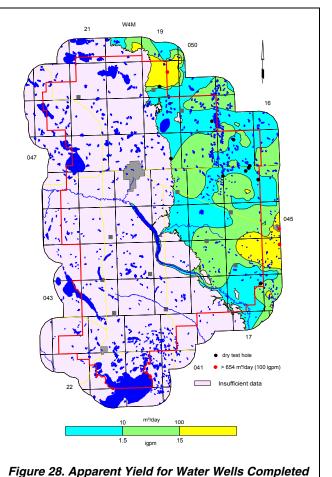
 Groundwaters from Lower Horseshoe Canyon Aquifer

5.3.8 Bearpaw Aquifer

The Bearpaw Aquifer comprises the permeable parts of the Bearpaw Formation that underlie the Lower Horseshoe Canyon Formation. The Bearpaw Formation is present under all of the County. The structure contours show that the Bearpaw Formation ranges in elevation from less than 510 to more than 710 metres AMSL and has a thickness of up to 100 metres. The non-pumping water level in the Bearpaw Aquifer is mainly downgradient to the south toward the Battle River and east and northwest toward Amisk Creek.

5.3.8.1 Depth to Top

The depth to the top of the Bearpaw Formation is variable, ranging from less than 25 metres at the eastern extent to more than 300 metres in the extreme southwestern part of the County (page A-52).


5.3.8.2 Apparent Yield

Forty-seven percent (42) of the 89 apparent yield values for individual water wells completed through the Bearpaw Aquifer are less than ten m^3/day ; 51% (45) range from ten to 100 m^3/day , and 2% (2) are greater than 100 m^3/day . There are 12 "dry" water test holes that are completed in the Bearpaw Aquifer.

Without the inclusion of the 12 dry water test holes, the median apparent yield value for water wells completed in the Bearpaw Aquifer is $10.5 \text{ m}^3/\text{day}$. With the inclusion of the 12, the median apparent yield value is $9.2 \text{ m}^3/\text{day}$.

In the County, there are 79 licensed and registered groundwater users that have water wells that are completed in the Bearpaw Aquifer, for a total authorized diversion of 250 m³/day, an average authorized diversion of 3.1 m³/day. The highest single diversion is authorized to divert 29 m³/day in 16-02-044-18 W4M for agricultural purposes.

Of the 79 licensed and registered groundwater users, 44 could be linked to water wells in the AENV groundwater database.

through Bearpaw Aquifer

5.3.8.3 Quality

The groundwaters from the Bearpaw Aquifer are mainly a sodium-bicarbonate or sodium-sulfate-type (see Piper diagram on CD-ROM), with 75% of the groundwater samples having TDS concentrations of greater than 1,000 mg/L (page A-54). Nearly 80% of the sulfate concentrations in groundwaters from the Bearpaw Aquifer are less than 500 mg/L. Sixty-five percent of the chloride concentrations from the Bearpaw are less than 100 mg/L. Fifty percent of the groundwater samples have fluoride concentrations that are less than 0.5 mg/L and 50% of the groundwater samples have fluoride concentrations that range from 0.5 mg/L to 1.5 mg/L.

		Ra	inge for Cour	All	Recommended Maximum	
Constituent	No. of Analyses	Minimum	<u>in mg/L</u> Maximum	Median	Bedrock Median	Concentration SGCDWQ
Total Dissolved Solids	263	385	7,515	1296	1,205	500
Sodium	165	0.0	1,690	455	440	200
Sulfate	261	0	4800	52	85	500
Chloride	263	0	1258	42	22	250
Fluoride	201	0	1	0.5	0.6	1.5
Concentration in milligrams per litre unless otherwise stated Note: Indicated concentrations are for Aesthetic Objectives except for Fluoride, which is for Maximum Acceptable Concentration (MAC) SGCDWQ - Summary of Guidelines for Canadian Drinking Water Quality Federal-Provincial Subcommittee on Drinking Water, April 2002						
Fluoride, which is for Maxim SGCDWQ - Summary of Gui	um Acceptable idelines for Ca	e Concentra Inadian Drin	tion (MAC) king Water Qu			

Of the five constituents that have been compared to the SGCDWQ, the median values of TDS and sodium exceed the guidelines. The median concentrations of TDS, sodium and chloride from water wells completed in the Bearpaw Aquifer are greater than the median concentrations from water wells completed in all Upper Bedrock Aquifer(s).

5.3.9 Oldman Aquifer

The Oldman Aquifer comprises the permeable parts of the Oldman Formation that underlie the Bearpaw Formation and is present under all of the County. Structure contours have been prepared for the top of the Formation. The structure contours show that the Oldman Formation ranges in elevation from less than 410 to more than 630 metres AMSL and has a maximum thickness of 130 metres. There are insufficient non-pumping water-level data to determine the gradient in the Oldman Aquifer.

5.3.9.1 Depth to Top

The depth to the top of the Oldman Formation is variable, ranging from less than 100 metres at the northeastern extent to more than 400 metres in the southwestern part of the County (page A-55).

5.3.9.2 Apparent Yield

In the County, there are no water wells completed in the Oldman Aquifer with apparent yield values. Within the larger study area, there are four water wells with apparent yield values; three are less than five m³/day and the fourth water well has an apparent yield of 25 m³/day, as shown in Figure 29.

In the County, there are no licensed or registered groundwater water wells that are completed in the Oldman Aquifer.

5.3.9.3 Quality

In the County, there are two water wells completed in the Oldman Aquifer with sufficient data to determine the groundwater type. One water well in 01-12-047-17 W4M, completed open-hole at a depth of 104 metres below ground surface, is a sodium-chloride-type; the other water well, in NE 12-045-17 W4M, is completed from 103 to 107 metres below groundwater surface and is a sodium-bicarbonate-type. The water well in 01-12-047-17 W4M has a TDS concentration of 3,437 mg/L, a sulfate concentration of 657 mg/L, a chloride concentration of 1,250 mg/L and a fluoride concentration of 30 mg/L. The water well in NE 12-045-17 W4M has a TDS concentration of 36 mg/L, and a fluoride concentration of 30 mg/L, a chloride concentration of 0.56 mg/L.

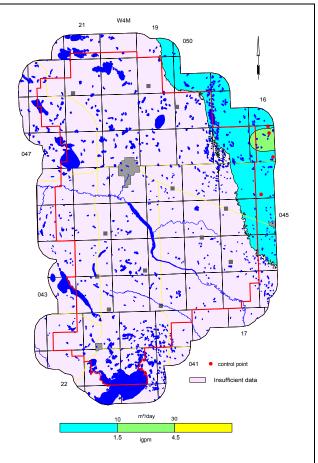
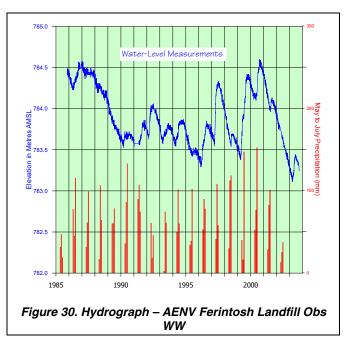
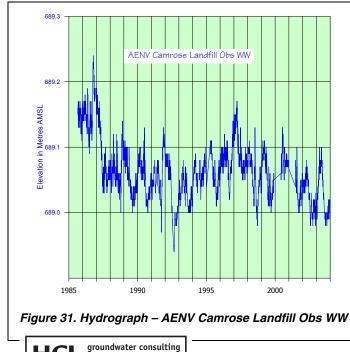


Figure 29. Apparent Yield for Water Wells Completed through Oldman Aquifer


6 GROUNDWATER BUDGET

6.1 Hydrographs


In the County, there are two observation water wells that are part of the AENV regional groundwater monitoring network where water levels are being measured and recorded as a function of time: (1) AENV Obs WW Ferintosh Regional Landfill 85-1 (Ferintosh Landfill Obs WW) in 04-14-044-21 W4M; and (2) AENV Obs Water Well (WW): Camrose Regional Landfill 85-1 (AENV Camrose Landfill Obs WW) in 12 16-046-20 W4M (see page A-59).

AENV Ferintosh Landfill Obs WW is completed from 25.3 to 35.1 metres below ground surface in the Upper Horseshoe Canyon Aquifer. The water level in the Obs WW has been measured since November 1985, as shown by the blue line in the adjacent graph. From early 1987 to early 1990, there was a net decline of one metre. From 1991 to 1996, overall annual water-level fluctuations mainly ranged from 0.25 to 0.5 metres. From 1997 to 2000, the overall annual water-level fluctuation rose up to one metre. From late 2000 to early 2003, there was a net decline of nearly 1.5 metres.

The water-level fluctuations in AENV Ferintosh Landfill Obs WW have been compared to the May, June and July precipitation measured at the Camrose weather station. In an area where there are no pronounced seasonal uses of groundwater, the highest yearly water level will mostly occur in late spring/early summer and the lowest yearly water level will be in late winter/early

spring. In the adjacent figure, it is apparent there is not a consistent yearly fluctuation in the water levels, but the main annual rise where present, does correspond to the highest month of spring/summer precipitation measured at the Camrose weather station.

AENV Camrose Landfill Obs WW is completed from 64.3 to 78.0 metres below ground surface in the Lower Horseshoe Canyon Aquifer. The water level in the AENV Camrose Landfill Obs WW has been measured since August 1985, as shown by the blue line in the adjacent graph. This hydrograph shows annual cycles of water-level rise and decline; however, the water-level rise begins in fall and the decline begins in spring. Overall annual fluctuations are approximately 0.1 metres.

The limited amount of data indicates that, in the area of the observation water wells, there is no depletion of the groundwater resource.

Page 37

groundwater consulting environmental sciences An estimate of the quantity of groundwater removed from each geologic unit in the County of Camrose must include both the groundwater diversions with licences and/or registrations and the groundwater diversions without licences and/or registrations. As stated previously on page 8 of this report, the daily water requirement for livestock for the County based on the 2001 census is 9,536 cubic metres. As of late 2003, AENV has licensed the use of 4,132 m³/day for livestock, which includes both surface water and groundwater. To obtain an estimate of the quantity of groundwater being diverted from the individual geologic units, it has been assumed that the remaining 5,045 m³/day of water required for livestock watering is obtained from unauthorized groundwater use.

There are 2,342 water wells that are used for domestic/stock or stock purposes. There are 1,022 licensed and registered groundwater users for agricultural (stock) and registration (stock) purposes, giving 1,320 unlicensed and not registered stock water wells. (Please refer to Table 3 on page 7 for the breakdown of aquifer of the 1,022 licensed and registered stock groundwater users). By dividing the number of unlicensed and not registered stock water wells (1,320) into the quantity required for stock purposes that is not licensed and registered (5,405 m³/day), the average unauthorized water well diverts 4.1 m³/day per stock water well.

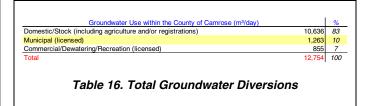
Groundwater for household use does not require a licence if the use is less than 1,250 m³/year. Under the *Water Act*, a residence is protected for up to 3.4 m³/day. However, the standard groundwater use for household purposes (a family of four) is 1.1 m³/day. Since there are 4,739 domestic or domestic/stock water wells in the County of Camrose serving a population of 7,294, and based on a family of four, the domestic use per water well is in the order of 0.4 m³/day. It is assumed that these 4,739 water wells are active; however, many are very old and may no longer be in use or may have been abandoned.

To obtain an estimate of the groundwater from each geologic unit, there are three possibilities for a water well. A summary of the possibilities and the quantity of water for each use is as follows:

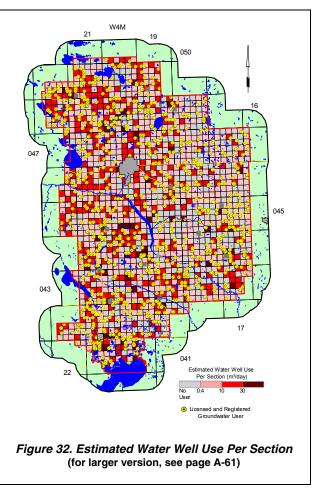
Domestic	0.4 m ³ /day
Stock	4.1 m ³ /day
Domestic/stock	4.5 m³/day

Because of the limitations of the data, no attempt has been made to compensate for dugouts, springs or inactive water wells.

Based on using all available domestic, domestic/stock, and stock water wells and corresponding calculations, Table 15 was prepared. Table 15 show a breakdown of the domestic water wells and stock water wells with or without licences and registrations by the geologic unit in which each water well is completed. The total domestic groundwater use is 1,824 m³/day and the total stock groundwater use is 8,813 m³/day, giving a total domestic and stock groundwater use of 10,636 m³/day. The data provided in Table 15 indicate that 40% of the 10,636 m³/day is from the Lower Horseshoe Canyon Aquifer.


					Number of	Total Number	Total Stock Use Without		
Aquifer	Number of	Total Domestic Use	Number of	Number of	Licensed Stock and/or	of Stock Water Wells Without	Licenses and/or Registrations	Total Licensed Stock and/or	Total Stock Us
Designation	Domestic	(0.4 m3/day)	Stock	Domestic and Stock	Registrations	Licences and/or Registrations	(4.1 m³/day)	Registered Groundwater Use (m3/day)	(m³/day)
Multiple Surficial Completions	153	92	78	85	82	81	332	233	565
Upper Surficial	250	165	43	179	60	162	663	217	880
Lower Surficial	131	76	42	66	45	63	258	128	386
Multiple Bedrock Completions	318	185	149	164	110	203	831	368	1,199
Lower Scollard	0	0	0	1	0	1	4	0	4
Upper Horseshoe Canyon	186	129	71	148	103	116	475	520	995
Middle Horseshoe Canyon	298	160	80	117	92	105	430	232	662
Lower Horseshoe Canyon	1,427	793	319	634	383	570	2,334	1,092	3,426
Bearpaw	220	129	27	114	79	62	254	250	504
Oldman	1	1	1	2	0	3	12	0	12
Foremost	1	0	0	0	0	0	0	0	0
Unknown	229	94	7	15	68	-46 (0)	0	180	180
Totals (1)	3,214	1,824	817	1,525	1,022	1,320 (1,366)	5,593	3,220	8,813

⁽¹⁾ The values given in the table have been rounded and, therefore, the columns and rows may not add up equally


By assigning 0.4 m³/day for domestic use, 4.1 m³/day for stock use and 4.5 m³/day for domestic/stock use, and using the total maximum authorized diversion associated with any licensed and/or registered water well, a map has been prepared that shows the estimated groundwater use in terms of volume per section per day for the County (not including springs).

There are 1,479 sections in the County. In 20% (298) of the sections in the County, there is no domestic, stock or licensed and registered groundwater user. The groundwater use for the remaining 1,181 sections varies from 0.4 m³/day to 770 m³/day (mainly the Town of Bashaw), with an average use per section of 11 m³/day (<2 igpm). The estimated water well use per section can be more than 30 m³/day in 51 of the 1,479 sections. There are 125 of the total 1,066 licensed and/or registered groundwater users in areas where the groundwater use is greater than 30 m³/day.

In summary, the estimated total groundwater use within the County of Camrose is 12,754 m³/day, with the

the County of Camrose is 12,754 m³/day, with the breakdown as shown above in Table 16. An estimated 12,480 m³/day is being withdrawn from a specific aquifer. The remaining 274 m³/day (2%) is being withdrawn from unknown aquifer units. Of the 12,480 m³/day, 73% is being diverted from bedrock aquifers and 27% from surficial aquifers. Approximately 40% of the total estimated groundwater use is from licensed and/or registered water wells.

6.3 Groundwater Flow

A direct measurement of groundwater recharge or discharge is not possible from the data that are available for the County. One indirect method of measuring recharge is to determine the quantity of groundwater flowing laterally through each individual aquifer. This method assumes that there is sufficient recharge to the aquifer to

maintain the flow through the aguifer and the discharge is equal to the recharge. However, even the data that can be used to calculate the quantity of flow through an aquifer must be averaged and estimated. То determine the flow requires a value for the average transmissivity of the aquifer, an average hydraulic gradient and an estimate for the width of the aquifer. For the present program, the flow has been estimated for various parts of individual aquifers within the County.

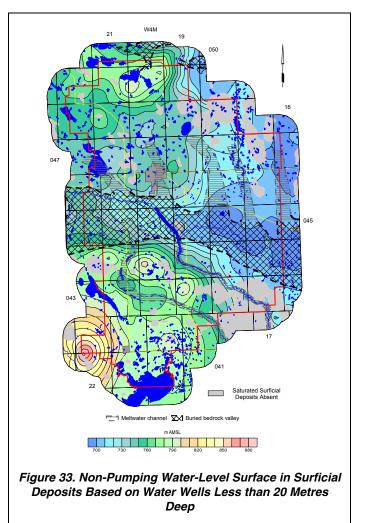
The flow through each aguifer assumes that by taking a large enough area, an aquifer can be considered as homogeneous, the average gradient can be estimated from the non-pumping water-level surface, and flow takes place through the entire width of the aquifer; flow through the aguifers also takes into consideration hydrogeological conditions outside the County border. Based on these assumptions, the estimated lateral groundwater flow through the individual aquifers has been summarized in Table 17.

Table 17 indicates that there is more groundwater flowing through the aquifers than the estimated use. However, even where use is less than the calculated aquifer flow, there can

Aquifer/Area	Trans (m ² /day)	Gradient (m/m)	Width (km)	Flow (m ³ /day)	Aquifer Flow (m ³ /day)	Licensed and/or Registered Diversion (m³/day)	Not Licensed and/or Registered Diversion (m³/day)	Total (m³/day)
Upper Surficial					9,347	675	663	1,338
Miquelon Lake Region								
South/Southeast	19.8	0.006	28.8	3,564				
Buried Red Deer Valley								
East/Southeast	19.8	0.003	12.8	792				
North	19.8	0.004	19.2	1,358				
Northeast	19.8	0.004	11.2	832				
Meeting Creek Region				002				
North	19.8	0.003	17.6	871				
South	19.8	0.003	22.4					
	13.0	0.005	22.4	1,386				
Buffalo Lake Region	10.0							
South	19.8	0.002	17.6	545				
Lower Surficial					1,283	581	258	839
Buried Red Deer Valley								
East of Battle River	26	0.001	13	173				
West of Battle River	26	0.003	13	1,109				
Upper Horseshoe Canyon					2,502	1,169	475	1,644
Beaver Lake Region								
North	12.4	0.003	24	797				
Southeast	12.4	0.005	11	651				
Southwest	12.4	0.006	11	868				
Buffalo Lake Region	10.1	0.000	40	100				
Southeast	12.4	0.002	10	186	3,026	320	430	750
Middle Horseshoe Canyon Bittern Lake Region					3,020	320	430	750
Southwest	8.6	0.003	19	516				
Battle River Region	0.0	0.000	10	510				
North	8.6	0.002	6	115				
Meeting Creek Region								
Southwest	8.6	0.005	24	1,032				
Northeast	8.6	0.005	24	1,106				
Buffalo Lake Region		0.000	40	050				
Southwest	8.6	0.003	10	258	10 771	1,240	2,334	3,574
Lower Horseshoe Canyon					13,771	1,240	2,334	3,574
Hamlet of Kingman Region Southeast	17.2	0.008	13	1,720				
Hamlet of Round Hill Region	17.2	0.000	15	1,720				
Northeast	17.2	0.003	11	602				
Bittern Lake Region								
West of Battle River	17.2	0.003	30	1,634				
Demay Lake Region								
Southwest	17.2	0.004	11	803				
East/Northeast	17.2	0.003	24	1,290				
Battle River Region Northeast	17.2	0.008	26	3,302				
North	17.2	0.003	13	550				
Meeting Creek Region								
South	17.2	0.003	38	2,064				
North	17.2	0.003	22	1,204				
Buffalo Lake Area	4= 0	0.000		000				
Southwest	17.2	0.002	22	602	4.000	050	07.1	
Bearpaw					1,095	250	254	504
Amisk Creek Region East	3.3	0.004	24	330				
Northwest	3.3 3.3	0.004	24 18	330 207				
Village of Bawlf Region	0.0	0.004	10	207				
Southeast	3.3	0.002	26	141				
Battle River Region								
South	3.3	0.003	22	231				
Northeast	3.3	0.002	29	186				

Table 17. Groundwater Budget

still be local impacts on water levels. The calculations of flow through individual aquifers as presented in Table 17 are very approximate and are intended only as a guide; more detailed investigations are needed to better understand the groundwater flow.


6.3.1 Quantity of Groundwater

An estimate of the volume of groundwater stored in the sand and gravel aquifers is 0.96 to 5.7 cubic kilometres. This volume is based on an areal extent of 3,830 square kilometres and a saturated thickness of 5 metres. The variation in the total volume is based on the value of porosity that is used for the surficial deposits. One estimate of porosity is 5%, which gives the low value of the total volume. The high estimate is based on a porosity of 30% (Ozoray, Dubord and Cowen, 1990).

The adjacent non-pumping water-level map has been prepared from water levels associated with water wells completed to depths of less than 20 metres in aquifers in the surficial deposits. The water levels from these water wells were used for the calculation of the saturated thickness of the surficial deposits and for calculations of recharge/discharge areas. In areas where the elevation of the water-level surface is below the bedrock surface, the surficial deposits are not saturated (indicated by grey areas on the map). The water-level map for the surficial deposits shows the main flow direction toward the Buried Red Deer Valley.

6.3.2 Recharge/Discharge

The hydraulic relationship between the groundwater in the surficial deposits and the groundwater in the bedrock aquifers is given by the non-pumping waterlevel surface associated with each hydraulic unit. Where the water level in the surficial deposits is at a higher elevation than the water level in the bedrock aquifers, there is the opportunity for groundwater to move from the surficial deposits into the bedrock aquifers. This condition would be considered as an area of recharge to the bedrock aquifers and an area of discharge from the surficial deposits. The amount of groundwater that would move from the surficial deposits to the bedrock aquifers is directly related to the vertical permeability of the sediments separating the two aquifers. In areas where the surficial deposits

are unsaturated, the extrapolated water level for the surficial deposits is used.

When the hydraulic gradient is from the bedrock aquifers to the surficial deposits, the condition is a discharge area from the bedrock aquifers, and a recharge area to the surficial deposits.

6.3.2.1 Surficial Deposits/Bedrock Aquifer

Recharge to the bedrock aquifers within the County takes place from the overlying surficial deposits and from flow in the aquifer from outside the County. On a regional basis, calculating the quantity of water involved is not possible because of the complexity of the geological setting and the limited amount of data.

The hydraulic gradient between the surficial deposits and the Upper Bedrock Aquifer(s) has been determined by subtracting the non-pumping water-level surface associated with all water wells completed in the Upper Bedrock Aquifer(s) from the non-pumping water-level surface determined for all water wells in the surficial deposits. The recharge classification is used where the water level in the surficial deposits is more than five metres above the water level in the Upper Bedrock Aguifer(s). The discharge areas are where the water level in the surficial deposits is more than two metres lower than the water level in the bedrock. When the water level in the surficial deposits is between five metres above and two metres below the water level in the bedrock, the area is classified as a transition, that is, no recharge and no discharge.

The locations of flowing water wells and springs are shown on Figure 34. These locations would reflect where there is an upward hydraulic gradient from the bedrock to the surficial deposits (i. e. discharge).

Figure 34 shows that, in 50% of the County, there is a downward hydraulic gradient (i. e. recharge) from the

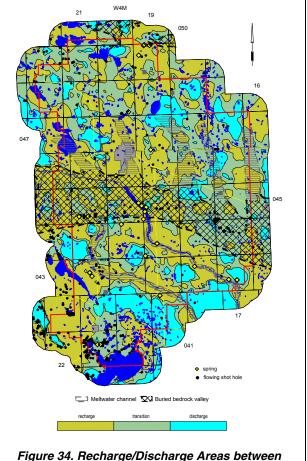


Figure 34. Recharge/Discharge Areas between Surficial Deposits and Upper Bedrock Aquifer(s)

surficial deposits toward the Upper Bedrock Aquifer(s). The areas south of the Buried Red Deer Valley showing where there is an upward hydraulic gradient (i .e. discharge) from the bedrock to the surficial deposits are mainly a result of gridding a limited amount of data. The remaining parts of the County are areas where there is a transition condition.

Because of the paucity of data, recharge/discharge maps for the individual bedrock aquifers have not been attempted.

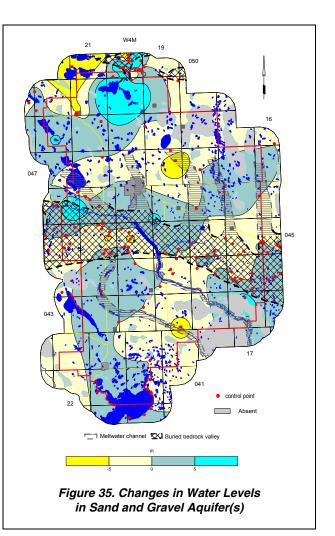
With 50% of the County land area being one of recharge to the bedrock, and the average precipitation being 493 mm per year, 0.3% of the annual precipitation is sufficient to provide the total calculated quantity of groundwater flowing through the Upper Bedrock Aquifer(s).

6.4 Areas of Groundwater Decline

In order to determine the areas of possible water-level decline in the Sand and Gravel Aquifer(s) and in the Upper Bedrock Aquifer(s), the following approach was attempted. The available non-pumping water-level elevation for each water well was first sorted by location, and then by date of water-level measurement. The dates of measurements in the Sand and Gravel Aquifer(s) were required to differ by at least one year. For water wells completed in the Upper Bedrock Aquifer(s), there were sufficient non-pumping water-level data that the dates of measurements were required to differ by at least ten years. Only the earliest and latest control points at a given location were used. The method of calculating changes in water levels is at best an estimate. Additional data would be needed to verify water-level change.

6.4.1 Sand and Gravel Aquifer(s)

Of the 1,000 surficial water wells with a NPWL and date in the County and buffer area, there are 114 water wells with sufficient control to prepare the adjacent map.


The interpretation of the adjacent map should be limited to areas where both earliest and latest water level control points are present; these areas indicated on Figure 35 are mainly in the Buried Red Deer Valley.

Where the earliest water level is at a higher elevation than the latest water level, there is the possibility that some groundwater decline has occurred. The adjacent map indicates that there may have been a decline in the NPWL in 60% of the County.

Where the earliest water level is at a lower elevation than the latest water level, there is the possibility that the groundwater has risen at that location. The water level may have risen as a result of recharge in wetter years or may be a result of the water well being completed in a different surficial aquifer.

Estimated Water Well Use	% of Area with
Per Section (m ³ /day)	a Decline
<10	25
10 to 30	25
>30	26
no use	24

Table 18. Water-Level Declinein Sand and Gravel Aquifer(s)

In areas where a water-level decline is projected, 24% of the areas has no estimated water well use; 25% is less than ten m³/day, 25% of the use is between ten and 30 m³/day, and the remaining 26% of the declines occurred where the estimated groundwater use per section is greater than 30 m³/day, as shown in Table 18.

The areas of groundwater decline in the Sand and Gravel Aquifer(s) where there is no estimated water well use suggest that groundwater diversion is not having an impact and that the decline may be due to variations in recharge to the Aquifer(s) or because the water wells are not on file with AENV.

6.4.2 Upper Bedrock Aquifer(s)

Of the 5,040 water wells completed in the Upper Bedrock Aquifer(s) with a non-pumping water level and a corresponding date in the County and buffer area, there are 332 water wells with sufficient control to prepare the adjacent map. The adjacent map indicates that in 50% of the County, it is possible that the NPWL has declined.

In areas where a water-level decline of more than five metres is projected, 41% of the areas has no estimated water well use; 2% is less than ten m³/day, 40% of the use is between ten and 30 m^3 /day, and the remaining 17% of the declines occurred where the estimated groundwater use per section is greater than 30 m^3 /day, as shown below in Table 19.

Estimated Water Well Use	% of Area with More
Per Section (m ³ /day)	than a 5-Metre Projected Decline
<10	2
10 to 30	40
>30	17
no use	41

Table 19. Water-Level Decline of More than Five Metres in Upper Bedrock Aquifer(s)

The areas of groundwater decline in the Upper Bedrock Aquifer(s) where there is no estimated water well use suggest that groundwater production is not

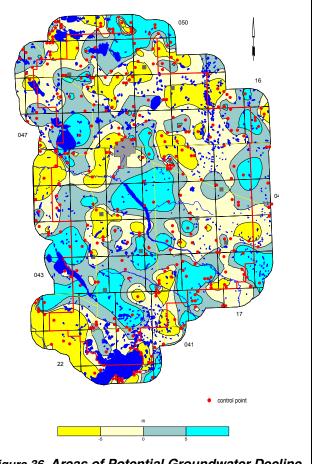
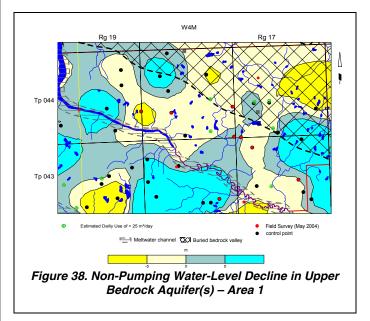
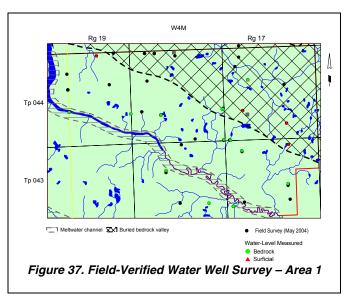


Figure 36. Areas of Potential Groundwater Decline – Upper Bedrock Aquifer(s)

having an impact and that the decline may be due to variations in recharge to the Aquifer(s) or because the water wells are not on file with AENV.


6.5 Discussion of Specific Issues

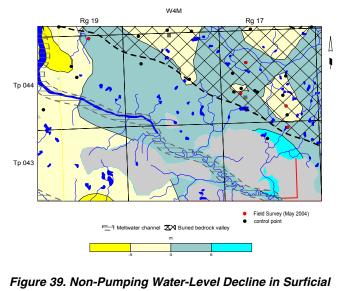
As per the Request for Proposal, the County requested that comments be made, where possible, on the following three study areas and issues. The issue is stated at the beginning of each of the following sections. In addition to the three study areas, the County made a special request to assist the Village of Ferintosh to develop an alternate groundwater supply.


6.5.1 Area 1 – North Slope of Battle River/Driedmeat Lake Townships 044 and 045, Ranges 17 to 19, W4M

Is there any hydrogeological reason for the apparent water-level decline in the water wells along the north slope of the Battle River in townships 044 and 045, ranges 17 to 19, W4M?

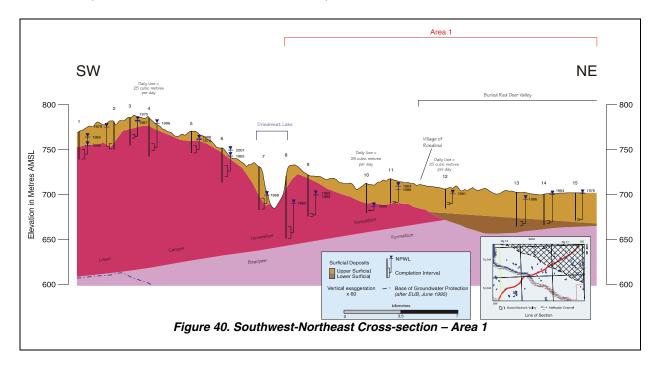
In the absence of available current water-level data in Area 1. HCL conducted a field-verified water well survey in May 2004 to help determine if there is a water-level decline in Area 1 (north slope of the Battle River/Driedmeat Lake). A visit was made to 57 landowners, including 12 locations south of Driedmeat Lake and the Battle River. Of the 57 land locations, water levels were measured in 22 water wells, of which 16 are completed in Upper Bedrock Aquifer(s), and five are completed in the surficial deposits, as shown on Figure 37; the completion aquifer for the remaining water well could not be determined due to insufficient completion details. Water levels were measured when possible during the water well survey. Spatial coordinates for water wells located during the survey were obtained using a Global Positioning System (GPS) unit.

the water wells are not on file with AENV.


The interpretation of Figures 38 and 39 should be limited to areas where both earliest and latest waterlevel control points are present; these areas indicated on Figure 37 show the water levels measured in surficial water wells are mainly in the Buried Red Deer Valley, but the water levels measured in bedrock water wells are throughout Area 1.

The adjacent map indicates that in 60% of Area 1, it is possible that the NPWL has declined in the Upper Bedrock Aquifer(s). In most areas where a water-level decline is projected, there is an estimated daily groundwater use per section of greater than 25 m³/day. The areas of groundwater decline in the Upper Bedrock Aquifer(s) where there is no estimated water well use suggest that groundwater production is not having an impact and that the decline may be due to variations in recharge to the Aquifer(s) or because

The adjacent map indicates that there may have been a decline in the NPWL in the surficial deposits north of the Battle River/Driedmeat Lake in 50% of the Buried Red Deer Valley; in the area immediately north of the Battle River/Driedmeat Lake, there has mainly been a rise in the NPWL in the surficial deposits.


Cross-section SW-NE was prepared to help illustrate the change in water levels in both the surficial deposits and the Upper Bedrock Aquifer(s). Where possible, a water well with an "early" and a "late" NPWL was used in the cross-section.

Cross-section SW-NE shows water wells numbered 11 to 15 are completed in the Sand and Gravel Aquifer(s): Nos. 11, 12 and 15 in the Upper Sand and Gravel Aquifer, and Nos. 13 and 14 in the Lower Sand and Gravel Aquifer. There appears to be a

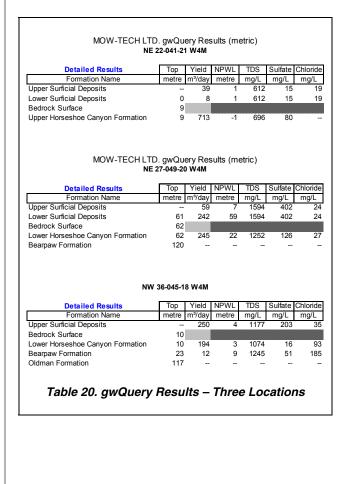
Deposits – Area 1

decline in the NPWL in the water wells completed in the Upper Sand and Gravel Aquifer, but a NPWL rise in the water wells completed in the Lower Sand and Gravel Aquifer.

Cross-section SW-NE shows water wells numbered 1 to 10 are completed in the Lower Horseshoe Canyon Aquifer. Water Well Nos. 1 to 7 are located south of the Battle River/Driedmeat Lake, and Water Well Nos. 8 to 10 are located north of the Battle River/Driedmeat Lake in Area 1. The indications are that there may be a NPWL decline in Water Well Nos. 1 to 3, but a NPWL rise in Water Well Nos. 4 to 7. On the north side of Driedmeat Lake, there appears to be a NPWL decline in Water Well Nos. 8 to 10.

A water-level decline may be occurring in some areas but are not significant and would not be expected to interface with the normal operation of a water well. The perceived water-level decline may be a result of water well performance and water well maintenance.

Page 46


groundwater consulting environmental sciences

6.5.2 Area 2 – Three Water Test Sites for Community Water Wells

Identify three locations for community water wells considered most suitable for the development of groundwater supplies based on the following criteria:

- 1) the apparent long-term yield of area water wells is greater than 131 m³/day (20 igpm)
- 2) the concentration of TDS in groundwater is less than 2,000 mg/L
- 3) the water well locations should be easily accessible, if possible

In addition, a fourth criteria was considered: the locations should not be in areas of potential NPWL decline in the surficial deposits and Upper Bedrock Aquifer(s). The areas shaded in red on the adjacent figure fulfill the four requirements and are based on the regional data available. Also shown on the figure are the locations where the licensed groundwater use is greater than 10 m³/day. Three preferred locations in each of the north, east and south portions of the county are summarized in the abbreviated gwQuery results below:

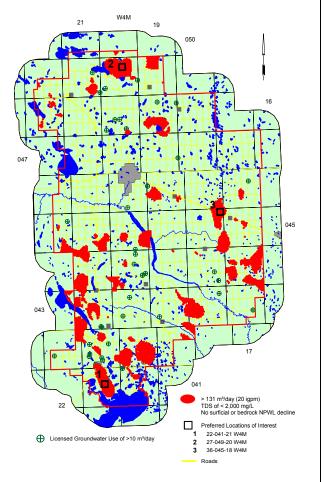
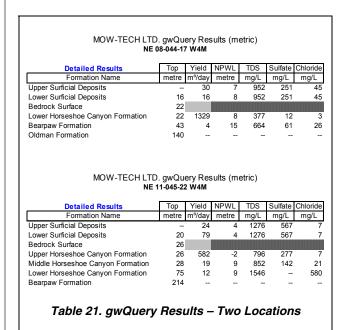


Figure 41. Areas of Groundwater Potential – Area 2


6.5.3 Area 3 – Three Areas for Groundwater-Based Industrial Development

Identify two or three areas with the best potential for groundwater supplies to support water-based industrial development

Two locations considered most suitable for the development to support water-based industrial development were identified using the following criteria:

- 1) the apparent long-term yield of area water wells is greater than 500 m³/day (76 igpm)
- 2) the concentration of TDS in groundwater is less than 1,000 mg/L
- locations should not be in areas of potential NPWL decline in the surficial deposits and Upper Bedrock Aquifer(s)

The areas shaded in red on the adjacent figure fulfill the three requirements and are based on the regional data provided as part of the regional groundwater assessment. Also shown on the figure are the locations where the licensed groundwater use is greater than 10 m^{3}/day . The two preferred locations based on highest apparent yields are summarized in the abbreviated gwQuery results below:

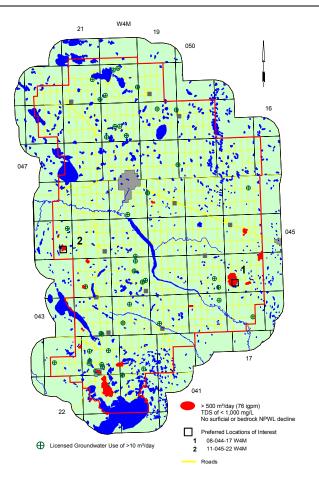


Figure 42. Areas of Groundwater Potential – Area 3

6.5.4 Area 4 – Village of Ferintosh

Groundwater is the main source of water developed for household use in the Village of Ferintosh. The Village has a population of 168 (Phinney, 2004) and is licensed to divert an annual groundwater diversion of 15,000 m³ (1,250 m³/month) from five water supply wells. Water Supply Well Nos. 1, 2, 3 and 4 have been in use since December 1998, and WSW No. 5 has been in use since Nov 2002. All five water supply wells are completed in fractured shale and coal in the Middle Horseshoe Canyon Aquifer.

Groundwater production data from April 2002 to June 2004 was provided by the Village of Ferintosh. The data indicated monthly diversion ranged from a low of 770 m³ in November 2003 to a high 1,205 m³ in July 2003, as shown on Figure 43. In 2003, 37% of the total groundwater production was diverted from WSW No. 1 The total groundwater production in 2003 from the Village of Ferintosh WSW Nos. 1, 2, 3, 4, and 5 was 11,582 m³/day, 77% of the 15,000 m³ authorized by AENV.

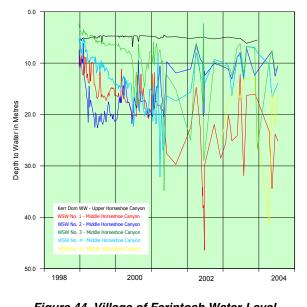
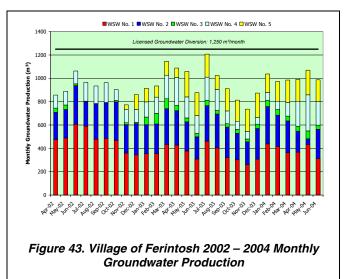
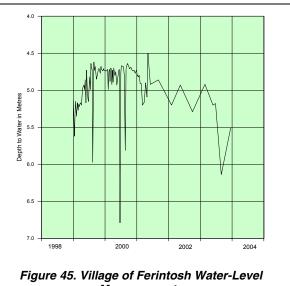
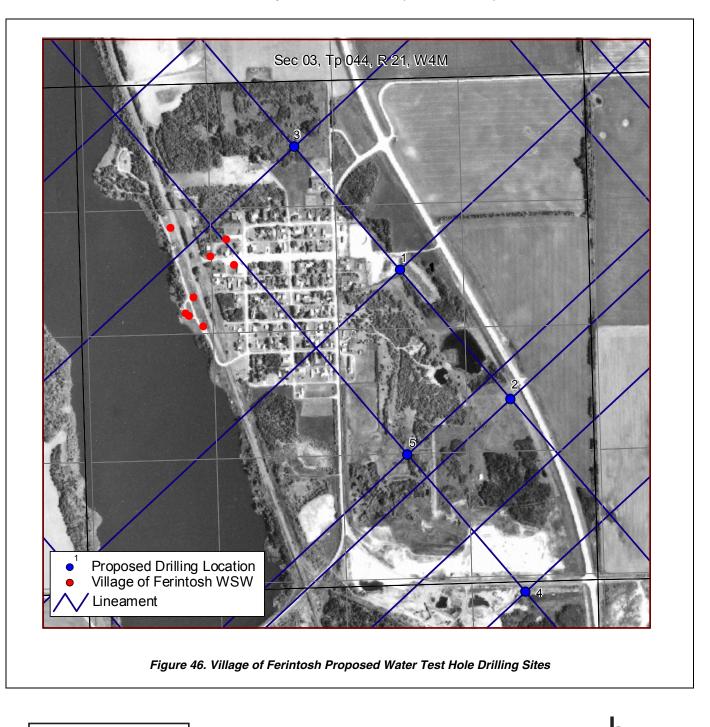




Figure 44. Village of Ferintosh Water-Level Measurements

The Village maintained a conscientious groundwater monitoring program from 1999 to early 2001. Since 2001, the inconsistency in frequency of water-level measurements in the water supply wells and observation well wells has compromised the interpretation of the data.

Water levels are measured in the five water supply wells, two observation water wells, and one domestic water well (see page A-71 for locations). Water-level measurements for WSW No. 1, 2, 3, 4 and 5, and the Kerr Domestic Water Well (Dom WW) are shown in the hydrographs on Figures 44 and 45, on pages A-73 and A-74.


Measurements in Kerr Dom WW

groundwater consulting

environmental sciences

The Village of Ferintosh would like to increase the availability of groundwater for the community. Because individual water well yields are low, a lineament analysis was completed in an attempt to identify more favourable drilling sites for future test drilling. The belief is that the lineaments are a reflection of fracturing occurring in one or more geological units. If a drilling site is selected at the intersection of two lineament traces, there is a higher probability of encountering geological units that are fractured.

Lineament traces identified in the general vicinity of Ferintosh are shown below on Figure 46. There are two sets of lineament traces, one orientated northwest-southeast and a second set at approximately 90 degrees to the first set. A total of five intersections have been identified as preferred drilling sites; three proposed drilling sites are along one northwest-southeast lineament trace and two are along a second northwest-southeast lineament trace. The features that were used to identify individual traces help establish the preferred locations.

lrogeologica

onsultants Itd.

When drilling at a given location, the maximum drilling depth is approximately 100 metres. For the present program the maximum drilling depth has been increased to include a sandstone layer near the base of the Horseshoe Canyon Formation.

Site	Location	10° Transverse Merc	Depth in	
Site	LUCALION	Easting		Metres
1	10-03-044-21 W4M	137376	5845517	160 - 190
2	08-03-044-21 W4M	137732	5845102	160 - 190
3	14-03-044-21 W4M	137038	5845912	160 - 190
4	16-34-043-21 W4M	137780	5844480	160 - 190
5	02-03-044-21 W4M	137401	5844922	160 - 190

Table 22. Maximum Depth to Drill for Proposed Water Test Hole Drilling Sites for the Village of Ferintosh

The expected apparent yield and chemistry quality for the five sites are summarized in the abbreviated gwQuery results below:

10-03-044-21 W4M						
Detailed Results	Тор	Yield	NPWL	TDS	Sulfate	Chloride
Formation Name	metre	m³/day	metre	mg/L	mg/L	mg/L
Upper Surficial Deposits		18	8	942	200	49
Lower Surficial Deposits	10		11	942	200	49
Bedrock Surface	11					
Upper Horseshoe Canyon Formation	11	2	9	615	147	44
Middle Horseshoe Canyon Formation	28	13	9	766	74	30
Lower Horseshoe Canyon Formation	74	8	33	1231	41	275
14-03-044-21 W4M						
Detailed Results	Тор	Yield	NPWL	TDS	Sulfate	Chloride
Formation Name	metre	m³/day	metre	mg/L	mg/L	mg/L
Upper Surficial Deposits		20	4	734	98	53
Lower Surficial Deposits	11		8	734	98	53
Bedrock Surface	13					
Upper Horseshoe Canyon Formation	13		7	575	151	43
Middle Horseshoe Canyon Formation	25	12	6	702	19	26
Lower Horseshoe Canyon Formation	72	10	34	1209	34	267
02-	03-044-2 [.]	1 W4M				
Detailed Results	Тор	Yield	NPWL	TDS		Chloride
Formation Name		m³/day	metre	mg/L	mg/L	mg/L
Upper Surficial Deposits			7	1343	356	50
Bedrock Surface	14					
Upper Horseshoe Canyon Formation	14		6	713		40
Middle Horseshoe Canyon Formation	22		9	908		36
Lower Horseshoe Canyon Formation	68	6	21	1250	44	278

08-03-044-21 W4M						
Detailed Results	Тор	Yield	NPWL	TDS	Sulfate	Chloride
Formation Name	metre	m³/day	metre	mg/L	mg/L	mg/L
Upper Surficial Deposits			12	1237	336	44
Bedrock Surface	13					
Upper Horseshoe Canyon Formation	13	13	11	659	148	40
Middle Horseshoe Canyon Formation	30	11	14	848	161	25
Lower Horseshoe Canyon Formation	77	6	32	1249	46	283

16-34-043-21 W4M

Detailed Results	Тор	Yield	NPWL	TDS	Sulfate	Chloride
Formation Name	metre	m³/day	metre	mg/L	mg/L	mg/L
Upper Surficial Deposits			7	1768	544	43
Bedrock Surface	16					
Upper Horseshoe Canyon Formation	16	34	3	762	184	33
Middle Horseshoe Canyon Formation	20	8	10	1006	281	22
Lower Horseshoe Canyon Formation	66	4	15	1264	47	286

Table 23. gwQuery Results – Village of Ferintosh Proposed Water Test Hole Drilling Sites

7 **RECOMMENDATIONS**

The present study has been based on information available from the groundwater database. The database has three problems:

- 1) the quality of the data
- 2) the coordinate system used for the horizontal control
- 3) the distribution of the data.

The quality of the data in the groundwater database is affected by two factors: a) the technical training of the persons collecting the data, and b) the quality control of the data. The possible options to upgrade the database include the creation of a "super" database, which includes only verified data. The first step would be to field-verify the 240 existing water wells listed in Appendix E. These water well records indicate that a complete water well drilling report is available along with at least a partial chemical analysis. The level of verification would have to include identifying the water well in the field, obtaining meaningful horizontal coordinates for the water well and the verification of certain parameters such as water level and completed depth. There is one water well for which the County has responsibility; the County-operated water well is included in Appendix E. It is recommended that the County-operated water wells plus the 240 water wells be field-verified, water levels be measured, a water sample be collected for analysis, and a short aquifer test be conducted. An attempt to update the quality of the entire database is not recommended.

Before an attempt is made to provide a major upgrade to the level of interpretation provided in this report, the accompanying maps and the groundwater query, it is recommended that the 240 water wells listed in Appendix E for which water well drilling reports are available, plus the County–operated water well, be subjected to the following actions (see pages C-2 to C-3):

- 1) The horizontal location of the water well should be determined within ten metres. The coordinates must be in 10TM NAD 27 or some other system that will allow conversion to 10TM NAD 27 coordinates.
- 2) A four-hour aquifer test (two hours of pumping and two hours of recovery) should be performed with the water well to obtain a realistic estimate for the transmissivity of the aquifer in which the water well is completed.
- 3) Water samples should be collected for chemical analysis after five and 115 minutes of pumping, and analyzed for major and minor ions.

This additional information would provide a baseline to be used for comparison to either existing chemical analyses or aquifer tests, or to determine if future monitoring would be necessary if significant changes in the aquifer parameters had occurred.

A list of the 241 water wells that could be considered for the above program is given in Appendix E and on the CD-ROM.

An attempt to link the AENV groundwater and licensing databases was 49% successful in this study (see CD-ROM); 51% of the licensed and/or registered water wells do not appear to have corresponding records in the AENV groundwater database. There is a need to improve the quality of the AENV licensing database. It is recommended that attempts be made in a future study to find and add missing drilling records to the AENV groundwater database and to determine the aquifer in which the authorized non-exempt water wells are completed.

While there are a few areas where water-level data are available at different times, on the overall, there are an insufficient number of water levels to set up a groundwater budget. One method to obtain additional water-level data is to solicit the assistance of the water well owners who are stakeholders in the groundwater resource. In the M.D. of Rocky View and in Flagstaff County, water well owners were being provided with a tax credit if they accurately measured the water level in their water well once per week for a year. A pilot project indicated that approximately five years of records are required to obtain a reasonable data set. The cost of a five-year project involving 50 water wells would be less than the cost of one drilling program that may provide two or three

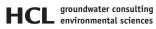
observation water wells. Monitoring of water levels in domestic and stock water wells is a practice that is recommended by PFRA in the "Water Wells That Last for Generations" manual and accompanying videos (Buchanan, Bob (editor). Alberta Agriculture, Food and Rural Development, 1996).

A second approach to obtain water-level data would be to conduct a field survey to identify water wells not in use that could be used as part of an observation water well network. County personnel and/or local residents could measure the water levels in the water wells regularly.

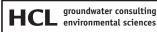
Communities that are concerned about apparent water-level declines in the aquifers in which their water supply wells are completed should implement a conscientious groundwater monitoring program.

There is also a need to provide the water well drillers with feedback on the reports they are submitting to the regulatory agencies. The feedback is necessary to allow for a greater degree of uniformity in the reporting process. This is particularly true when trying to identify the bedrock surface. One method of obtaining uniformity would be to have the water well drilling reports submitted to the AENV Resource Data Division in an electronic form. The money presently being spent by AENV to transpose the paper form to the electronic form should be used to allow for a technical review of the data and follow-up discussions with the drillers.

An effort should be made to form a partnership with the petroleum industry. The industry spends millions of dollars each year collecting information relative to water wells. Proper coordination of this effort could provide significantly better information from which future regional interpretations could be made. This could be accomplished by the County taking an active role in the activities associated with the construction of lease sites for the drilling of hydrocarbon wells and conducting of seismic programs.


In summary, for the next level of study, the database needs updating. The updating of information for existing water wells requires more details for the water wells listed in Appendix E; the additional information for new water wells is mainly better spatial control.

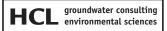
Groundwater is a renewable resource and it must be managed.


REFERENCES 8

- 1) Alberta Department of Environment. 1978. Earth Sciences and Licensing Division, Water Rights Branch. Hamlet of Meeting Creek Groundwater. SE 8-043-19 W4 & SE 5-043-19 W4. Meeting Creek Area. 05-043-19 W4. [<hc fiche 1978.20>]
- 2) Borneuf, D. M. 1983. Alberta Geological Survey. Springs of Alberta. [QE 186 P7 No. 82-03]
- 3) Buchanan, Bob (editor). Alberta Agriculture, Food and Rural Development. Engineering Services Branch. Alberta Environment, Licensing and Permitting Standards Branch, Canada. Prairie Farm Rehabilitation Administration. 1996. Water Wells ... that Last for Generations.
- 4) CAESA Soil Inventory Project Working Group. 1998a. AGRASID: Agricultural Region of Alberta Soil Inventory Database (Version 1.0). Edited by J. A. Brierley, B. D. Walker, P. E. Smith, and W. L. Nikiforuk. Alberta Agric., Food & Rural Development, publications.
- 5) CAESA. 1998b. Alberta Agric., Food & Rural Development for CAESA. Agricultural Impacts on Water Quality in Alberta. [TD 227 A3 A57 1998]
- 6) Carlson, V. A. 1967. Alberta Geological Survey. Bedrock Topography and Surficial Aquifers of the Edmonton District, Alberta. Edmonton District Area. [QE 186 P7 no. 66-03]
- 7) Catuneanu, Octavian, Andrew D. Miall and Arthur R. Sweet. 1997. Reciprocal Architecture of Bearpaw T-R Sequences, Uppermost Cretaceous, Western Canada Sedimentary Basin. Bulletin of Canadian Petroleum Geology. Vol. 45, No. 1 (March, 1997), P. 75-94.
- 8) Ceroici, W. 1979. Hydrogeology of the Southwest Segment, Edmonton Area, Alberta. Alberta Research Council. Earth Sciences Report 78.5.
- 9) Currie, D. V. Dec-1976. Mobile Augers and Research Ltd. Village of Rosalind. SW 17-44-17 W4. Compilation of Existing Groundwater Information for Submission to Department of Environment. 17-044-17 W4. [<hc fiche 1976.6>]
- 10) EBA Engineering Consultants Ltd. Mar-1976. Alberta Department of Environment. Groundwater Evaluation. The Village of Bashaw, Alberta. A Preliminary Evaluation of the Groundwater Supplies of Eight Towns in Alberta. 04-042-21 W4. [<hc fiche 1976.8>]
- 11) Edwards, D., D. Scafe, R. Eccles, S. Miller, T. Berezniuk, and D. Boisvert. 1996. Alberta Geological Survey. Mapping and Resource Exploration of the Tertiary and Preglacial Sand and Gravel Formations of Alberta. [QE 186 Op94-06]
- 12) Farvolden, R. N., and J. W. Foster. 1958. Alberta Geological Survey. A General Outline of Groundwater Conditions in the Alberta Plains Region. [QE 186 P7 no. 58-01]
- 13) Farvolden, R. N., W. A. Meneley, E. G. LeBreton, D. H. Lennox, and P. Meyboom. 1963. Alberta Geological Survey. Early Contributions to the Groundwater Hydrology of Alberta. [QE 186 R415 no. 012]
- Federal-Provincial-Territorial Committee on Drinking Water. 2003. Summary of Guidelines for Canadian Drinking Water Quality.]
- 15) Fitzgerald, D. A. 1997. CAESA. Alberta Farmstead Water Quality Survey. [TD 227 A3 I34 A33 1997]


16) Green, R. 1972. Alberta Geological Survey. Geological Map of Alberta. [AGS MAP 027]

- 17) Green, Robert. 1982. Edmonton: Research Council of Alberta. Geological Map of Alberta. [AGS map 27a]
- Groundwater Consultants Group. Jan-1977. Research Council of Alberta. Edmonton Regional Utilities Study. Groundwater Evaluation of the New Sarepta Area, Alberta. New Sarepta Area. Tp 49-50, R 21-23, W4M. [<hc fiche 1977.4>-003]
- 19) Hamilton, W. H., W. Langenberg, M. C. Price, and D. K. Chao. 1999. Alberta Geological Survey. Geological Map of Alberta (CD). [AGS MAP 236D]
- 20) Hardick, R. C. Jun-1979. Alberta Department of Environment, Earth Sciences Division, Groundwater Branch. Ferintosh Water Supply. 03-044-21 W4.
- 21) Hydrogeological Consultants Ltd. Jan-1969. Town of Bashaw. Groundwater Study 1969. Bashaw Area. 042-21 W4M. (unpublished contract report Jan-1969.) [70-052.00] [83A10 .B375 1969/01]
- 22) Hydrogeological Consultants Ltd. Oct-1969. Town of Bashaw. Appraisal of Water Source. Bashaw Area. 042-21 W4M. (unpublished contract report Oct-1969.) [69-053.00] [83A10 .B375 1969/10]
- 23) Hydrogeological Consultants Ltd. Oct-1976. Heffel Home Ranch. Groundwater Research and Evaluation for the Heffel Ranch. Camrose Area. 35-046-21 W4M. — (unpublished contract report - Oct-1976.) [76-222.00] [83H02 .C35 1976/10]
- 24) Hydrogeological Consultants Ltd. Feb-1977. Alberta Recreation, Parks and Wildlife. 1976 Groundwater Investigation. Miquelon Lake Provincial Park. 20-049-20 W4M. — (unpublished contract report - Feb-1977.) [77-301.00] [83H02 .M568L3P72 1977/02]
- 25) Hydrogeological Consultants Ltd. Oct-1979. Alberta Recreation and Parks. 1979 Groundwater Study: Phase I. Miquelon Lake Provincial Park. 20-049-20 W4M. — (unpublished contract report - Oct-1979.) [79-302.00] [83H02 .M568L3P72 1979/10]
- 26) Hydrogeological Consultants Ltd. Dec-1979. Town of Bashaw. 1979 Groundwater Program. Bashaw Area. 04-042-21 W4M. (unpublished contract report Dec-1979.) [<->] [83A10 .B375 1979/12]
- 27) Hydrogeological Consultants Ltd. Mar-1980. W.J. Francl and Associates. 1979-1980 Groundwater Study: Phase II. Miquelon Lake Provincial Park. 20-049-20 W4M. — (unpublished contract report - Mar-1980.) [80-303.00] [83H02 .M568L3P72 1980/03]
- 28) Hydrogeological Consultants Ltd. Nov-1980. B & H Homes Ltd. Proposed Development. Miquelon Lake Area. 19-049-20 W4M. (unpublished contract report Nov-1980.) [80-113.00] [83H02 .M568L3 1980/11]
- 29) Hydrogeological Consultants Ltd. Feb-1981a. Alberta Recreation and Parks, Design and Implementation Branch. Re-evaluation of Water Wells No. 3, 3-80, and 2-80. Miquelon Lake Provincial Park. 049-20 W4M. — (unpublished contract report - Feb-1981.) [80-110.00] [83H02 .M568L3P72 1981/02]
- 30) Hydrogeological Consultants Ltd. Feb-1981b. Village of New Norway. Water Well No. 4: 1977-1979 Groundwater Program. New Norway Area. 045-21 W4M. — (unpublished contract report - Feb-1981.) [80-114.00] [83A14 .N4N6 1981/02]
- 31) Hydrogeological Consultants Ltd. Oct-1983. Home Oil Company Limited. Testing of R. Pratt Domestic Water Well. Bashaw Area. 02-042-22 W4M. (unpublished contract report Oct-1983.) [83-127.00]
 [83C11.B375 1983/10]


- 32) Hydrogeological Consultants Ltd. May-1985. Esso Resources Canada Limited. S. Sware Domestic Water Well. Hay Lakes Area. 20-049-21 W4M. — (unpublished contract report - May-1985.) [85-120.00] [83H03 .H395L3 1985/05]
- 33) Hydrogeological Consultants Ltd. Oct-1985. Esso Resources Canada Limited. Esso et al Joarcam: H. Reinke Aquifer Testing. Hay Lakes Area. 33-048-21 W4M. (unpublished contract report Oct-1985.) [85-152.00] [83H03 .H395L3 1985/10]
- 34) Hydrogeological Consultants Ltd. May-1986. Esso Resources Canada Limited. Esso et al Joarcam: H. Atema Aquifer Testing. Hay Lakes Area. 26-048-21 W4M. (unpublished contract report May-1986.) [85-151.00] [83H02 .H395L3 1986/05]
- 35) Hydrogeological Consultants Ltd. Jun-1986. Esso Resources Canada Limited. Esso et al Joarcam: Johnstone Aquifer Testing. Hay Lakes Area. 09-049-21 W4M. — (unpublished contract report - Jun-1986.) [85-131.00] [83H03 .H395L3 1986/06]
- 36) Hydrogeological Consultants Ltd. Jun-1987. Dome Petroleum Limited. 1987 Victoria Water Source Well. Kinsella Area. 11D-17-048-08 W4M. — (unpublished contract report - Jun-1987.) [87-102.00]
- 37) Hydrogeological Consultants Ltd. Jun-1988a. Esso Resources Canada Limited. Esso-Hay Lakes: E. Neiman Aquifer Testing. Hay Lakes Area. 08-049-21 W4M. (unpublished contract report Jun-1988.) [88-116.00] [83H03 .H395L3 1988/06]
- 38) Hydrogeological Consultants Ltd. Jun-1988b. Infrastructure Systems Ltd. (ISL). 1988 Groundwater Assessment. Camrose Area. 047-20 W4M. (unpublished contract report Jun-1988.) [88-135.00]
- 39) Hydrogeological Consultants Ltd. Nov-1988. Esso Resources Canada Limited. Esso Joarcam: Hydrocarbon Well: J. Reist Aquifer Testing. Hay Lakes Area. 08-049-21 W4M. — (unpublished contract report - Nov-1988.) [88-117.00] [83H03 .H395L3 1988/11]
- 40) Hydrogeological Consultants Ltd. May-1990. City of Camrose. 1990 Groundwater Review. Camrose Area. 045-19, 045-20, 045-21 W4M; 046-19, 046-20, 046-21 W4M. (unpublished contract report May-1990.) [90-120.00] [83H02 .C35 1990/05]
- 41) Hydrogeological Consultants Ltd. Jan-1995. Poco Petroleums Ltd. Dalen and Forre Domestic Water Well Testing. Bruce Area. 18/19-047-17 W4M. — (unpublished contract report - Jan-1995.) [95-153.00] [83H01 .B78 1995/09]
- 42) Hydrogeological Consultants Ltd. Jan-1997. Poco Petroleums Ltd. Harvey Harbak Domestic Water Well Testing. Bruce Area. 25-047-18 W4M. — (unpublished contract report - Jan-1997.) [96-133.00] [83H01 .B78 1997/01]
- 43) Hydrogeological Consultants Ltd. Mar-1997. Poco Petroleums Ltd. Farness Domestic Water Well Testing. Bruce Area. 30-047-17 W4M. — (unpublished contract report - Mar-1997.) [97-120.00] [83H01 .B78 1997/03]
- 44) Hydrogeological Consultants Ltd. Apr-1997. Poco Petroleums Ltd. Poco Bruce: Naslund Domestic Water Well Testing. Bruce Area. 24-047-17 W4M. — (unpublished contract report - Apr-1997.) [96-135.01] [83H01 .B78 1997/04]
- 45) Hydrogeological Consultants Ltd. Sep-1997. Larson's Waterwell Drilling Ltd. Aquifer Test Interpretation: Proposed Development - Braseth Beach. Buffalo Lake Area. 18-041-20 W4M. — (unpublished contract report - Sep-1997.) [97-215.00] [83A10 .B84L3 1997/09]

- 46) Hydrogeological Consultants Ltd. Jul-1998a. Poco Petroleums Ltd. Poco Bruce 12-04-048-17 W4M. Holden Area. NW 04-048-17 W4M. — (unpublished contract report - Jul-1998.) [98-137.00] [83H01 .H65 1998/07]
- 47) Hydrogeological Consultants Ltd. Jul-1998b. Poco Petroleums Ltd. Poco Bruce 12-04-048-17 W4M: Marjan Van Biezen Domestic Water Well Testing. Holden Area. NE 04-048-17 W4M. — (unpublished contract report - Jul-1998.) [98-137.00] [83H01 .H65 1998/07a]
- 48) Hydrogeological Consultants Ltd. Jul-1998c. Poco Petroleums Ltd. Poco Bruce 12-04-048-17 W4M: Tim Knudson Water Well Testing. Holden Area. SE 04-048-17 W4M. (unpublished contract report Jul-1998.) [98-137.00] [83H01 .H65 1998/07b]
- 49) Hydrogeological Consultants Ltd. Jul-1998d. Poco Petroleums Ltd. Poco Bruce 12-4-048-17 W4M. Holden Area. SE 05-048-17 W4M. — (unpublished contract report - Jul-1998.) [98-137.00] [83H01 .H65 1998/07c]
- 50) Hydrogeological Consultants Ltd. Jul-1998e. Poco Petroleums Ltd. Poco Bruce 12-4-048-17 W4M: Bruce Peterson Domestic Water Well Testing. Holden Area. SE 05-048-17 W4M. (unpublished contract report Jul-1998.) [98-137.00] [83H01 .H65 1998/07c-001]
- 51) Hydrogeological Consultants Ltd. Jul-1998f. Poco Petroleums Ltd. Poco Bruce 13-21-047-17 W4M: Glen Forre Water Well Testing. Holden Area. SW 29-047-17 W4M. — (unpublished contract report - Jul-1998.) [98-149.00] [83H01 .H65 1998/07d]
- 52) Hydrogeological Consultants Ltd. Jul-1998g. Poco Petroleums Ltd. Poco Bruce 14-24-047-17 W4M: Alvar Naslund Water Well Testing. Holden Area. SW 30-047-16-W4M. (unpublished contract report Jul-1998.) [98-135.00] [83H01 .H65 1998/07e]
- 53) Hydrogeological Consultants Ltd. Jul-1998h. Poco Petroleums Ltd. Poco Bruce 14-24-047-17 W4M: Lee Naslund Water Well Testing. Holden Area. NE 23-047-17 W4M. — (unpublished contract report - Jul-1998.) [98-135.00] [83H01 .H65 1998/07f]
- 54) Hydrogeological Consultants Ltd. Jul-2000. Avalanche Energy Limited. Site Investigation. Meeting Creek Area. NE 31-042-19 W4M. (unpublished contract report Jul-2000.) [00-134.00] [83A10 .M4C7 2000/07]
- 55) Hydrogeological Consultants Ltd. Nov-2000. Infrastructure Systems Ltd. Groundwater Prognosis -Dominion Malting Ltd. Camrose Area. SE 05-046-19 W4M. — (unpublished contract report - Nov-2000.) [00-223.00] [83H02 .C35 2000/11]
- 56) Hydrogeological Consultants Ltd. Apr-2002. Agriculture & Agri-Food Canada, PFRA. Groundwater Availability Final. Camrose Area. Tp 043 to 044, R 19 to 20, W4M. (unpublished contract report Apr-2002.) [02-132.00] [83H02 .C35 2002/04 cd]
- 57) Hydrogeological Consultants Ltd., Intera Env. Cons. Ltd. & Mobile Augers & Research Ltd. Dec-1975. Environment Conservation Authority. Management of Groundwater Resources in Alberta. Alberta. [AB .1975/12]
- 58) John A. Allan, Consulting Geologist. 1942. Camrose Water Supply. 047-20 W4M.
- 59) Jordan, G. W. Jun-1980. Alberta Department of Environment, Environmental Protection Services, Earth Sciences Division, Soils Branch. Proposed Landfill Site. City of Camrose. SW 1-48-20 W4. 01-048-20 W4. [<hc fiche 1980.3>]

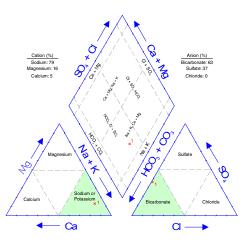
- 60) Jordan, G. W. Jan-1983. Alberta Department of Environment, Environmental Protection Services, Earth Sciences Division, Soils Branch. Proposed Regional Landfill Site. N 1/2 16-46-20 W4. Camrose Area. 16-046-20 W4.
- 61) Kazantzides, E. Apr-1980. Alberta Department of Environment, Environmental Protection Services, Earth Sciences Division, Groundwater Branch. Village of Bittern Lake (36-46-22 W4). Groundwater Availability. Bittern Lake Area. 36-046-22 W4.
- 62) Kazantzides, E. Jan-1981a. Alberta Department of Environment, Environmental Protection Services, Earth Sciences Division, Groundwater Branch. Addendum to the Meeting Creek Groundwater Investigation. Meeting Creek Area. SE 08-043-19 W4M. [83A10.M4C7 1981/01]
- 63) Kazantzides, E. Jan-1981b. AENV. Groundwater Investigation. Village of Ferintosh. Ferintosh Area. 3-044-21 W4M. [83A14 .F475 1981/01]
- 64) Kazantzides, E. Jan-1981c. AENV. Groundwater Investigation Village of Hay Lakes. Hay Lakes Area. Tp 049, R 21, W4M. [83H03 .H395L3 1981/01]
- 65) Le Breton, E. Gordon, and A. Vandenberg. 1965. Alberta Geological Survey. Chemical Analyses of Groundwaters of East-Central Alberta. [QE 186 P7 no. 65-05-001]
- 66) Le Breton, E. Gordon. 1971. Research Council of Alberta. Hydrogeology of the Red Deer Area, Alberta. Red Deer Area. [QE 186 P7 no. 71-01]
- 67) Lorberg, E. Apr-1982. AENV. Gwynne Gravels Study. Gwynne Area. Tp 046, R 22, W4M. [83A14 .G99 1982/04]
- 68) Marciniuk, J. Oct-1973. Alberta Department of Environment, Environmental Protection Services, Earth Science Division & Licensing Division, Groundwater Development Branch. Hamlet of Meeting Creek. NW 5-43-19 W4. 05-043-19 W4. [Marciniuk 1973.2]
- Marciniuk, J. Feb-1979. Alberta Department of Environment. Meeting Creek Groundwater Investigation. Meeting Creek Area. Tp 043, R 19, W4M. [83A10 .M4C7 1979/02]
- 70) Mehra, S. Jun-1978. Alberta Department of Environment, Environmental Protection Service, Earth Sciences Division. Shallow Groundwater Investigation of Pelican Point Subdivision (SW 16-41-20 W4). 16-041-20 W4. [<hc fiche 1978.3>]
- 71) Miller, D. Jul-1982. Alberta Department of Environment, Environmental Protection Services, Earth Sciences Division, Soils Branch. Preliminary Site Investigation for the Proposed Camrose Regional Landfill. SE 1/4 20-47-20 W4. 20-047-20 W4.
- 72) Mitchell, P., and E. E. Prepas. 1990. University of Alberta. Atlas of Alberta Lakes. Alberta. [G 1166 C3 A84 1990]
- 73) MLM Groundwater Engineering Ltd. Apr-1981. AENV. Waste Stabilization Pond Exfiltration Impact Study - Village of Rosalind. Rosalind Area. 17-044-17 W4M. [83A16.R67 1981/04]
- 74) MLM Groundwater Engineering Ltd. Feb-1986. Alberta Environment. Groundwater Investigation for Village of Bittern Lake. 30-046-21 W4.

- 75) Moell, C. E. Western Soil & Environmental Services. Feb-1982. Alberta Environment, Waste Management Branch. Hydrogeologic Evaluation of the Camrose Regional Sanitary Landfill Site (Proposed). 12-048-20 W4.
- 76) Mossop, G. and I. Shetsen (co-compilers). 1994. Geological Atlas of the Western Canada Sedimentary Basin. Produced jointly by the Canadian Society of Petroleum Geology, Alberta Research Council, Alberta Energy, and the Geological Survey of Canada.
- 77) Mow-Tech Ltd. May-1998a. Poco Petroleums Ltd. Poco Bruce 06-28-047-17 W4M: Sharon Olsen Domestic Water Well Testing. Bawlf Area. 06-28-047-17 W4M. [83H02.B39 1998/05]
- 78) Mow-Tech Ltd. May-1998b. Poco Petroleums Ltd. Poco Bruce 06-28-047-17 W4M: Bill Fuchs Water Well Testing. Bawlf Area. 06-28-047-17 W4M. [83H02 .B39 1998/05a]
- 79) Mow-Tech Ltd. May-1998c. Poco Petroleums Ltd. Poco Bruce 06-28-047-17 W4M: Bob Seney Domestic Water Well Testing. Bawlf Area. 06-28-047-17 W4M. [83H02 .B39 1998/05b]
- 80) Mow-Tech Ltd. Sep-1998a. Poco Petroleums Ltd. Poco Bruce 09-34-047-18 W4M: David Strilchuck Water Well Testing. Camrose Area. 09-34-047-18 W4M. [83H02 .C35 1998/09]
- 81) Mow-Tech Ltd. Sep-1998b. Poco Petroleums Ltd. Poco Bruce 09-34-047-18 W4M: Jim Toule Domestic Water Well Testing. Camrose Area. 09-34-047-18 W4M. [83H02 .C35 1998/09a]
- 82) Mow-Tech Ltd. Sep-1998c. Poco Petroleums Ltd. Poco Bruce 09-34-047-18 W4M: Kerry Blades Domestic Water Well Testing. Camrose Area. 09-34-047-18 W4M. [83H02.C35 1998/09b]
- 83) Mow-Tech Ltd. Sep-1998d. Poco Petroleums Ltd. Poco Bruce 09-34-047-18 W4M: Ron Chrystian Domestic Water Well Testing. Round Hill Area. 09-34-047-18 W4M. [83H02 .R68H5 1998/09]
- 84) Nielsen, G. L., D. Hackbarth, and S. Bainey. 1972. Alberta Geological Survey. Bibliography of Groundwater Studies in Alberta. 1912 1971. [QE 186 Op72-18]
- 85) Olson, J. Jun 1976. Alberta Department of Environment, Environmental Protection Services, Earth Sciences & Licensing Division. Evaluation of Groundwater Supply at Miquelon Lake Provincial Park. Miquelon Lake Provincial Park. 20-49-20-W4. [<hc fiche 1976.2.-002]</p>
- 86) Ozoray, G., M. Dubord, and A. Cowen. 1990. Groundwater Resources of the Vermilion 73E Map Area, Alberta. Alberta Environmental Protection.
- 87) Pawlowicz, J. G., and M. M. Fenton. 1995a. Alberta Geological Survey. Bedrock Topography of Alberta. [AGS MAP 226]
- 88) Pawlowicz, J. G., and M. M. Fenton. 1995b. Alberta Geological Survey. Drift Thickness of Alberta. 84J/83B/73M/83H/83D/83A/82H/84A/83P/83M/73E/82H/84C/83C/84L/82P/84P/83L/84F/84E/83N/84O/7 3O/83F/84M. [AGS MAP 227]
- 89) PFRA. May-1971. Saskatchewan Nelson Basin Board. Appendix A Geological Investigation of Battle River Kelsey Site. Battle River Area. 32&33-43-18 W4M & 4&5-44-18 W4M. [83A15.B379R5 1971/05]
- 90) PFRA. Mar-1998. Village of Ferintosh. Summary of Groundwater Investigations by PFRA Red Deer District Office.
- 91) Phinney, V. Laverne (Editor and publisher) (Diskette). 2003a. The Alberta List.

92) Phinney, V. Laverne (Editor and publisher) (Hard Copy). 2003b. The Alberta List.

- 93) Prosser, D. W. Oct-1974a. Alberta Department of Environment, Environmental Protection Services, Earth Sciences Division, Groundwater Development Branch. Rural Water Development Program. M. Klevgaard 1273-E. NE 21-43-20 W4. 21-043-20 W4.
- 94) Prosser, D. W. Oct-1974b. Alberta Department of Environment, Environmental Protection Services, Earth Sciences and Licensing Division, Groundwater Development Branch. Rural Water Development Program. NW 27-45-19 W4. 27-045-19 W4. [https://www.communication.com
- 95) Rippon, R. E. Mar 1976. Geoscience Consulting Ltd. Edmonton, Alberta. Evaluation of Water Supply. Rosalind, Alberta. 17-44-17-W4. [<hc fiche 1976>-009]
- 96) Rippon, R. E., and O. Tokarsky. Geoscience Consulting Ltd. Apr-1976. Alberta Department of Environment. Evaluation of Water Supply. Edberg, Alberta. 14-044-20 W4. [83A15.E33 1976/04]
- 97) Rippon, R. E., and O. Tokarsky. Geoscience Consulting Ltd. Mar-1976a. Alberta Department of Environment. Evaluation of Water Supply. New Norway, Alberta. New Norway Area. 11-045-21 W4M. [83A15.N4N6 1976/03]
- 98) Rippon, R. E., and O. Tokarsky. Geoscience Consulting Ltd. Mar-1976b. Alberta Department of Environment. Evaluation of Water Supply. Rosalind, Alberta. 17-044-17 W4. [<hc fiche 1976.10.1>]
- 99) Shetsen, I. 1990. Alberta Geological Survey. Quaternary Geology, Central Alberta. [AGS map 213]
- 100) Shetsen, I. and ARC. 1976. Alberta Research Council. Sand and Gravel Resources of the Battle River Region, Central Alberta. Battle River Area. [QE 186 Op76-15]
- 101) Stalker, A. MacS. 1961. Geological Survey of Canada. Buried Valleys in Central and Southern Alberta. [QE 185 C213 P60-32]
- 102) Stalker, A. MacS. 1963. Geological Survey of Canada. Quaternary Stratigraphy in Southern Alberta. [QE 185 C213 P62-34]
- 103) Statistics Canada. 2001 Census of Agriculture. (CD-ROM).
- 104) Stein, R. 1982. Alberta Geological Survey. Hydrogeology of the Edmonton Area (Southeast Segment), Alberta. Edmonton Area (SE). [QE 186 P7 no. 79-06]
- 105) Strong, W. L., and K. R. Leggat. 1981. Ecoregions of Alberta. Alta. En. Nat. Resour., Resour. Eval. Plan Div., Edmonton as cited <u>in</u> Mitchell, Patricia and Ellie Prepas (eds.). 1990. Atlas of Alberta Lakes. The University of Alberta Press. Page 12.
- 106) Thornthwaite, C. W., and J. R. Mather. 1957. Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance. Drexel Institute of Technology. Laboratory of Climatology. Publications in Climatology. Vol. 10, No. 3, P. 181-289.
- 107) Tokarsky, O. Geoscience Consulting Ltd. Dec-1981. County of Camrose. Aquifer Test. NW 2-49-20 W4. 02-049-20 W4.
- 108) Toth, J., G. F. Ozoray, E. I. Wallick, R. Bibby, G. M. Gabert, et al. 1977. Alberta Geological Survey. Contributions to the Hydrogeology of Alberta. [AGS Bulletin 035]

- 109) UMA Engineering Ltd. March 2003. Tank Loader Facility. Groundwater Well. NE 33-044-20 W4M. County of Camrose, Alberta.
- 110) W. J. Francl & Associates Consulting Engineering Ltd. Oct-1979. Department of Recreation and Parks. Miquelon Lake Provincial Park: 1979 Water Study: Phase I: Groundwater. Miquelon Lake Provincial Park Area. 049-20 W4M. [83H02 .M568L3P72 1979/10]
- 111) W. J. Francl & Associates Consulting Engineering Ltd. Apr-1980. Department of Recreation and Parks. Miquelon Lake Provincial Park: 1979/1980 Water Study: Phase II: Groundwater. Miquelon Lake Provincial Park Area. 049-20 W4M. [83H02 .M568L3P72 1980/10]
- 112) Village of Ferintosh. Personal Communication. Fax of 08/24/2004.


9 GLOSSARY

Anion	negatively charged ion					
Aquifer	a formation, group of formations, or part of a formation that contains saturated permeable rocks capable of transmitting groundwater to water wells or springs in economical quantities					
Aquitard	a confining bed that retards but does not prevent the flow of water to or from an adjacent aquifer					
Available Drawdown	in a confined aquifer, the distance between the non-pumping water level and the top of the aquifer					
	in an unconfined aquifer (water table aquifer), two thirds of the saturated thickness of the aquifer					
Borehole	includes all "work types" except springs Water Well Diagram					
Completion Interval	see diagram Water Level					
Deltaic	a depositional environment in standing water near the mouth of a river a combination of evaporation from open bodies of					
Evapotranspiration	a combination of evaporation from open bodies of water, evaporation from soil surfaces, and transpiration from the soil by plants (Freeze and Cherry, 1979)					
Facies	the aspect or character of the sediment within beds of one and the same age (Pettijohn, 1957)					
Fluvial	produced by the action of a stream or river					
Friable	poorly cemented					
Hydraulic Conductivity	the rate of flow of water through a unit cross-section under a unit hydraulic gradient; units are length/time					
Kriging	a geo-statistical method for gridding irregularly-spaced data (Cressie, 1990)					
Lacustrine	fine-grained sedimentary deposits associated with a lake environment and not including shore-line deposits					
Lithology	description of rock material					
Lsd	Legal Subdivision					
m²/day	metres squared per day					
m ³	cubic metres					
m³/day	cubic metres per day					
mg/L	milligrams per litre					
Median	the value at the centre of an ordered range of numbers					

Obs WW

Observation Water Well

Piper tri-linear diagram a method that permits the major cation and anion compositions of single or multiple samples to be represented on a single graph. This presentation allows groupings or trends in the data to be identified. From the Piper tri-linear diagram, it can be seen that the groundwater from this sample water well is a sodium-bicarbonate-type. The chemical type has been determined graphically by calculating the dominant cation and anion. For a more detailed explanation, please refer to Freeze and Cherry, 1979

Piper Tri-Linear Diagram

Rock	earth material below the root zone

Surficial Deposits includes all sediments above the bedrock

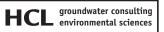
Till a sediment deposited directly by a glacier that is unsorted and consisting of any grain size ranging from clay to boulders

Transmissivity the rate at which water is transmitted through a unit width of an aquifer under a unit hydraulic gradient: a measure of the ease with which groundwater can move through the aquifer

- Apparent Transmissivity: the value determined from a summary of aquifer test data, usually involving only two water-level readings
 - Effective Transmissivity: the value determined from late pumping and/or late recovery water-level data from an aquifer test
 - Aquifer Transmissivity: the value determined by multiplying the hydraulic conductivity of an aquifer by the thickness of the aquifer

Water Well a hole in the ground for the purpose of obtaining groundwater; "work type" as defined by AENV includes test hole, chemistry, deepened, well inventory, federal well survey, reconditioned, reconstructed, new, old well-test

Yield a regional analysis term referring to the rate a properly completed water well could be pumped, if fully penetrating the aquifer


Apparent Yield: based mainly on apparent transmissivity

Long-Term Yield: based on effective transmissivity

AAFC-PFRA Prairie Farm Rehabilitation Administration Branch of Agriculture and Agri-Food Canada

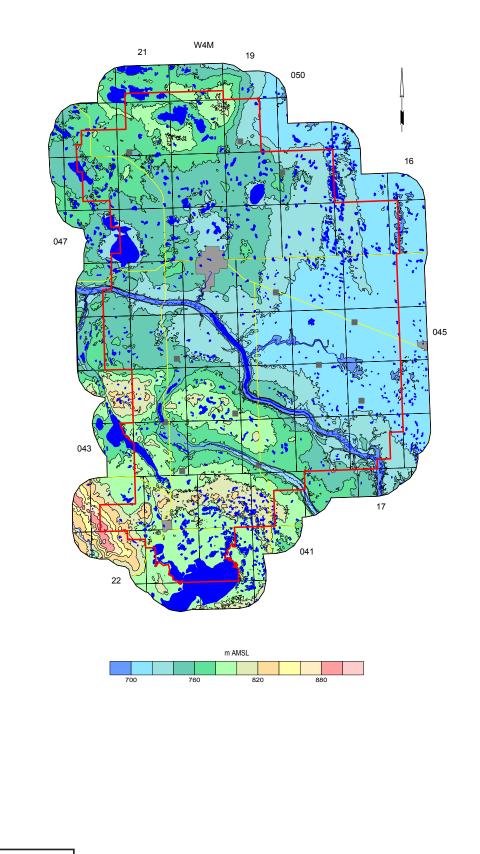
AENV Alberta Environment

AMSL above mean sea level

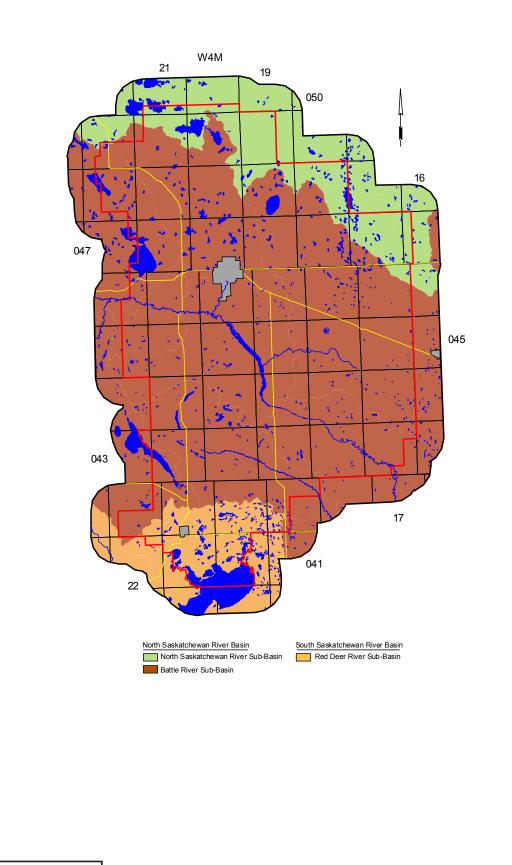
- BGP Base of Groundwater Protection
- DEM Digital Elevation Model
- DST drill stem test
- EUB Alberta Energy and Utilities Board
- GCDWQ Guidelines for Canadian Drinking Water Quality
- IAAM Infinite Aquifer Artesian Model. The mathematical model is used to calculate water levels at a given location. The model has been used for more than 20 years by HCL for several hundred groundwater monitoring projects. The model aquifer is based on a solution of the well function equation. The simulation calculates drawdown by solving the well function equation using standard approximation methods. The drawdown at any given point at any given time uses the method of superposition.
- NPWL non-pumping water level
- TDS Total Dissolved Solids
- WSW Water Source Well or Water Supply Well

10 CONVERSIONS

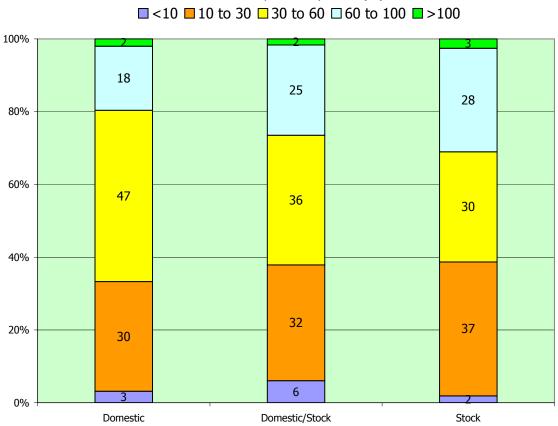
Multiply	by	To Obtain
Length/Area		
feet	0.304 785	metres
metres	3.281 000	feet
hectares	2.471 054	acres
centimetre	0.032 808	feet
centimetre	0.393 701	inches
acres	0.404 686	hectares
inchs	25.400 000	millimetres
miles	1.609 344	kilometres
kilometre	0.621 370	miles (statute)
square feet (ft ²)	0.092 903	square metres (m ²)
square metres (m ²)	10.763 910	square feet (ft ²)
square metres (m ²)	0.000 001	square kilometres (km²)
O		
<u>Concentration</u>	14.070.050	
grains/gallon (UK)	14.270 050	parts per million (ppm)
ppm	0.998 859	mg/L
mg/L	1.001 142	ppm
Volume (capacity) acre feet	1233.481 838	cubic metres
		cubic metres
cubic feet	0.028 317	
cubic metres	35.314 667	cubic feet
cubic metres	219.969 248	gallons (UK)
cubic metres	264.172 050	gallons (US liquid)
cubic metres	1000.000 000	litres
gallons (UK)	0.004 546	cubic metres
imperial gallons	4.546 000	litres
Rate		
litres per minute (lpm)	0.219 974	UK gallons per minute (igpm)
litres per minute	1,440 000	cubic metres/day (m ³ /day)
igpm	6.546 300	cubic metres/day (m ³ /day)
cubic metres/day	0.152 759	igpm
ouble metros/day	0.102700	19P111


COUNTY OF CAMROSE NO. 22 Appendix A

Hydrogeological Maps and Figures

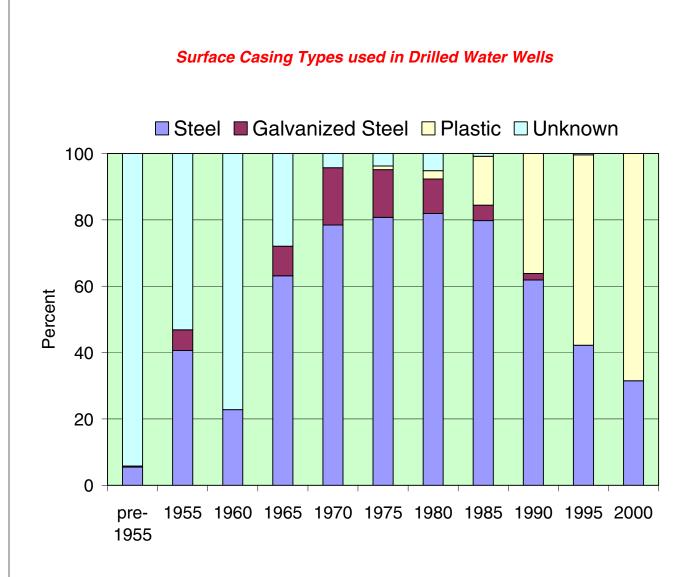

Surface Topography	3
River Sub-Basins	4
Percentage of Domestic, Domestic/Stock and Stock Water Wells vs Completed Depth	5
Locations of Drilled and Bored Water Wells	
Surface Casing Types used in Drilled Water Wells	7
Locations of Water Wells and Springs	8
Licensed and Registered Groundwater Water Wells	9
Depth to Base of Groundwater Protection	10
Generalized Cross-Section	11
Geologic Column	12
Hydrogeological Maps	13
Cross-Section A - A'	14
Cross-Section B - B'	15
Cross-Section C - C'	16
Cross-Section D - D'	17
Cross-Section E - E'	18
Cross-Section F - F'	19
Cross-Section G - G'	20
Cross-Section H - H'	21
Bedrock Topography	22
Thickness of Sand and Gravel Deposits	23
Water Wells Completed In Surficial Deposits	24
Amount of Sand and Gravel in Surficial Deposits	
Thickness of Sand and Gravel Aquifer(s)	26
Apparent Yield of Water Wells Completed in Sand and Gravel Aquifer(s)	27
Total Dissolved Solids in Groundwater from Surficial Deposits	28
Apparent Yield for Water Wells Completed through Upper Sand and Gravel Aquifer	29
Apparent Yield for Water Wells Completed through Lower Sand and Gravel Aquifer	30
Bedrock Geology	31
Piper Diagrams	32
Apparent Yield for Water Wells Completed in Upper Bedrock Aquifer(s)	33
Bedrock Water Well Yields vs Completed Depth	
Total Dissolved Solids in Groundwater from Upper Bedrock Aquifer(s)	35
Fluoride in Groundwater from Upper Bedrock Aquifer(s) in Camrose County and Surrounding Counties	36
Fluoride vs Sodium Concentrations	37
Depth to Top of Upper Scollard Formation	38
Depth to Top of Lower Scollard Formation	
Apparent Yield for Water Wells Completed through Lower Scollard Aquifer	40
Total Dissolved Solids in Groundwater from Lower Scollard Aquifer	41
Depth to Top of Battle Formation	42
Depth to Top of Upper Horseshoe Canyon Formation	
Apparent Yield for Water Wells Completed through Upper Horseshoe Canyon Aquifer	44

Regional Groundwater Assessment, 1p 041 to 050, R 16 to 22, W4M	
Total Dissolved Solids in Groundwater from Upper Horseshoe Canyon Aquifer	45
Depth to Top of Middle Horseshoe Canyon Formation	
Apparent Yield for Water Wells Completed through Middle Horseshoe Canyon Aquifer	47
Total Dissolved Solids in Groundwater from Middle Horseshoe Canyon Aquifer	
Depth to Top of Lower Horseshoe Canyon Formation	
Apparent Yield for Water Wells Completed through Lower Horseshoe Canyon Aquifer	
Total Dissolved Solids in Groundwater from Lower Horseshoe Canyon Aquifer	
Depth to Top of Bearpaw Formation	
Apparent Yield for Water Wells Completed through Bearpaw Aquifer	53
Total Dissolved Solids in Groundwater from Bearpaw Aquifer	54
Depth to Top of Oldman Formation	
Apparent Yield for Water Wells Completed through Oldman Aquifer	
Total Dissolved Solids in Groundwater from Oldman Aquifer	
Depth to Top of Foremost Formation	
AENV Observation Water Wells	59
AENV Ferintosh Landfill Obs WW and Camrose Precipitation	60
Estimated Water Well Use Per Section	61
Non-Pumping Water-Level Surface in Surficial Deposits Based on Water Wells Less than 20 Metr	es Deep62
Recharge/Discharge Areas between Surficial Deposits and Upper Bedrock Aquifer(s)	63
Changes in Water Levels in Surficial Deposits	
Areas of Potential Groundwater Decline in Upper Bedrock Aquifer(s)	
Field-Verified Water Well Survey - Area 1	
Non-Pumping Water-Level Decline in Upper Bedrock Aquifer(s) - Area 1	67
Non-Pumping Water-Level Decline in Surficial Deposits – Area 1	
SW-NE Cross-Section – Area 1	
Areas of Groundwater Potential – Area 2	
Areas of Groundwater Potential – Area 3	71
Village of Ferintosh Water Wells	72
Village of Ferintosh 2002 – 2004 Monthly Groundwater Production	
Village of Ferintosh Water-Level Measurements	
Village of Ferintosh Water-Level Measurements – Kerr Dom WW	
Village of Ferintosh Water-Level Measurements – Obs WW Nos. 1 and 2	
Village of Ferintosh Proposed Water Test Hole Drilling Sites	
Overlay	
,	

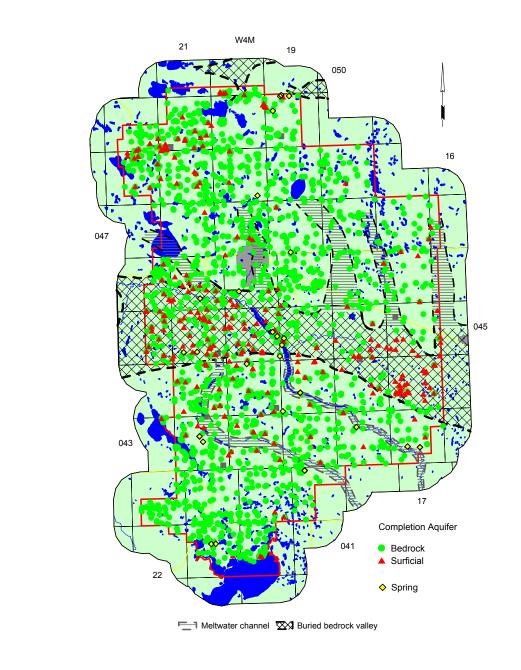


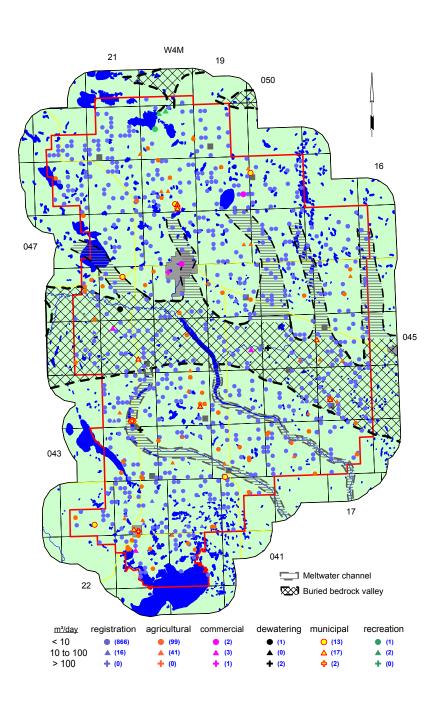
River Sub-Basins

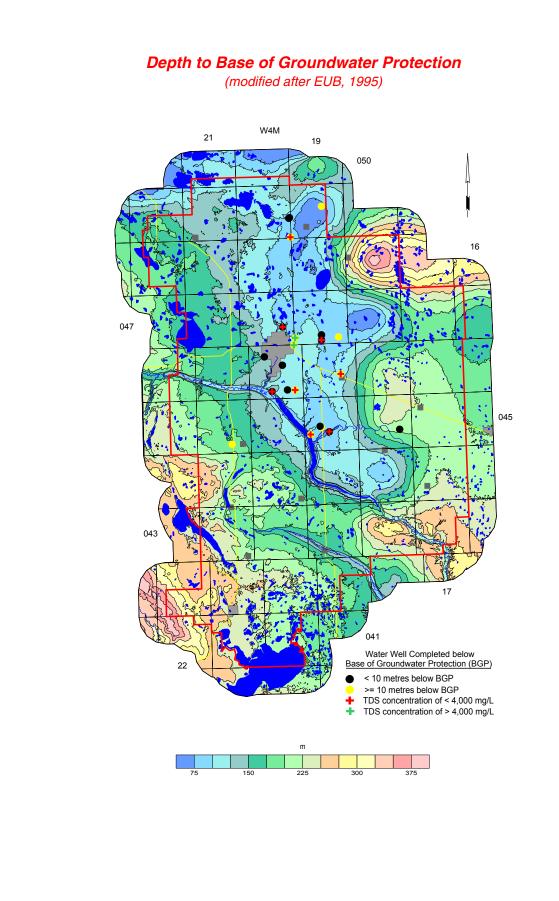
Percentage of Domestic, Domestic/Stock and Stock Water Wells vs Completed Depth

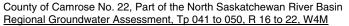


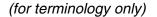
Depth Completed (m)

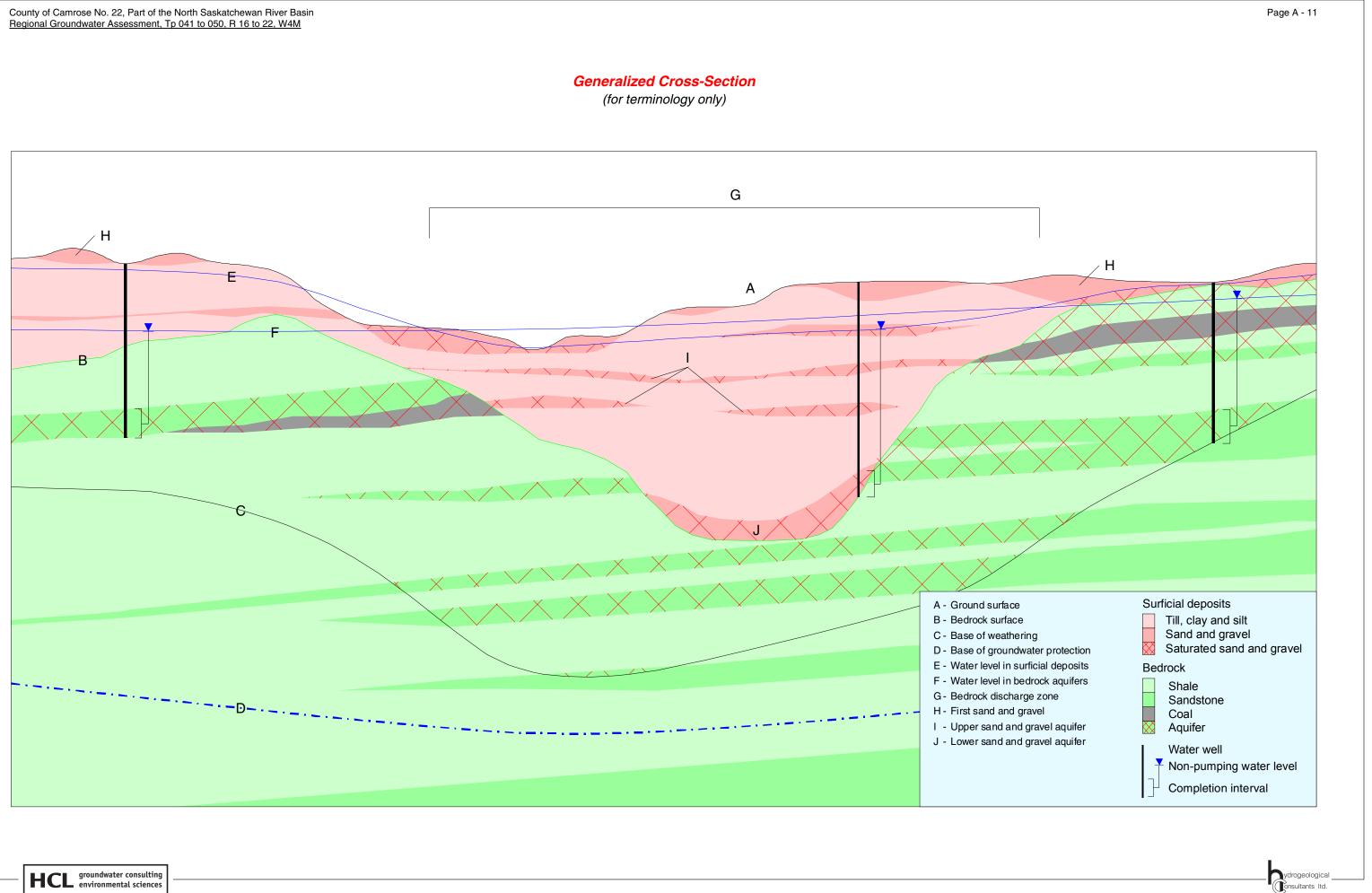



Meltwater channel XX Buried bedrock valley



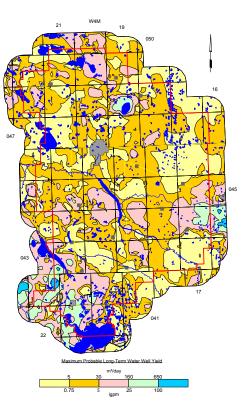




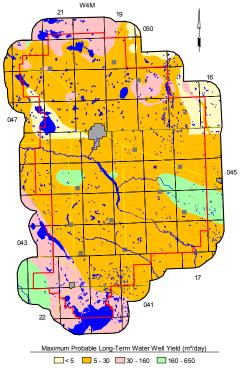


ydrogeological Consultants Itd.

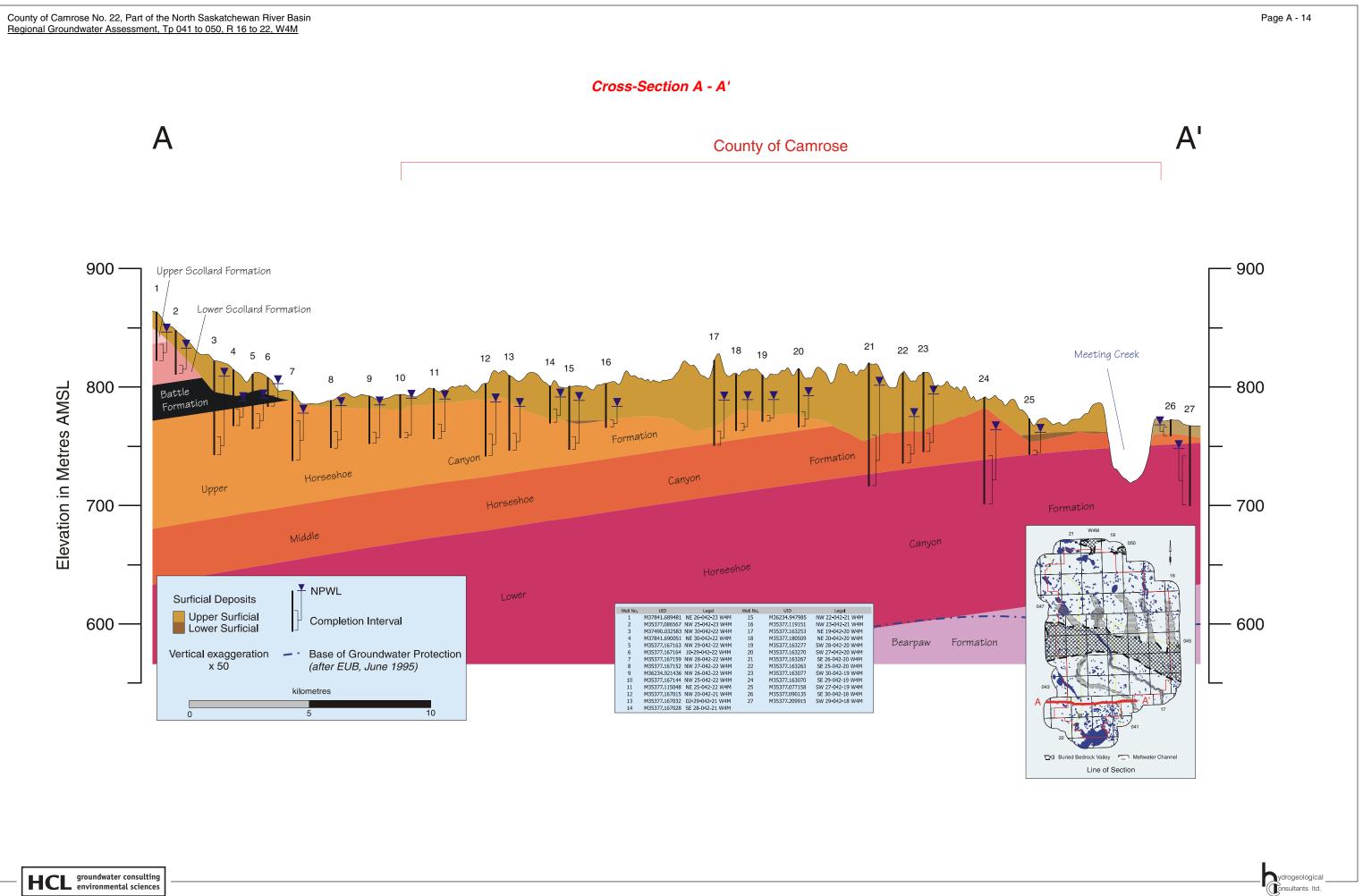
Group and Formation Member Average Average Av Designation Lithology Lithologic Description Designation Thickness (m) Thickness (m) Thick 0 <140 Upper <140 sand, gravel, till, Surficial Deposits clay, silt <50 Lower 100 40-100 Upper 60-150 shale, sandstone, coal Scollard Formation 20-60 Lower 200 shale, clay, tuff ~25 \bigotimes **Battle Formation** < 0.3 Kneehill Member 5-10 $\overline{\mathbf{a}}$ ~100 Upper 300 ~100 Middle E Depth (m) 300-380 Horseshoe Canyon Formation shale, sandstone, coal, 400 bentonite, limestone, ironstone ~170 Lower 500 shale, sandstone, siltstone 60-120 **Bearpaw Formation** 600 Dinosaur Member 40-130 sandstone, siltstone, **Oldman Formation** Group Upper Siltstone Member shale, coal 700 Comrey Member <300 River Birch Lake Member <70 Belly <60 Ribstone Creek Member <200 800 sandstone, shale Foremost Formation <70 Victoria Member 0-30 Brosseau Member

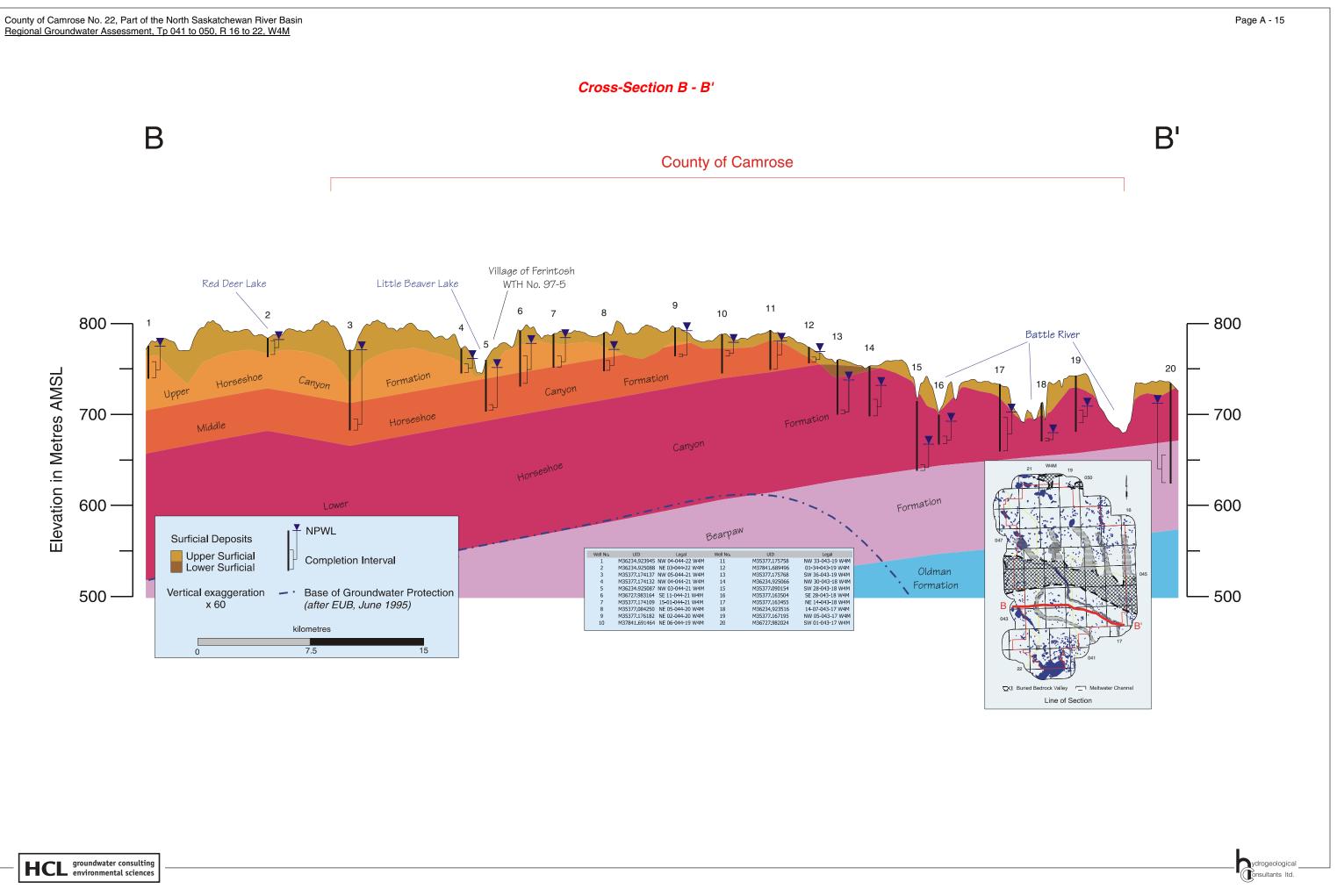

Geologic Column

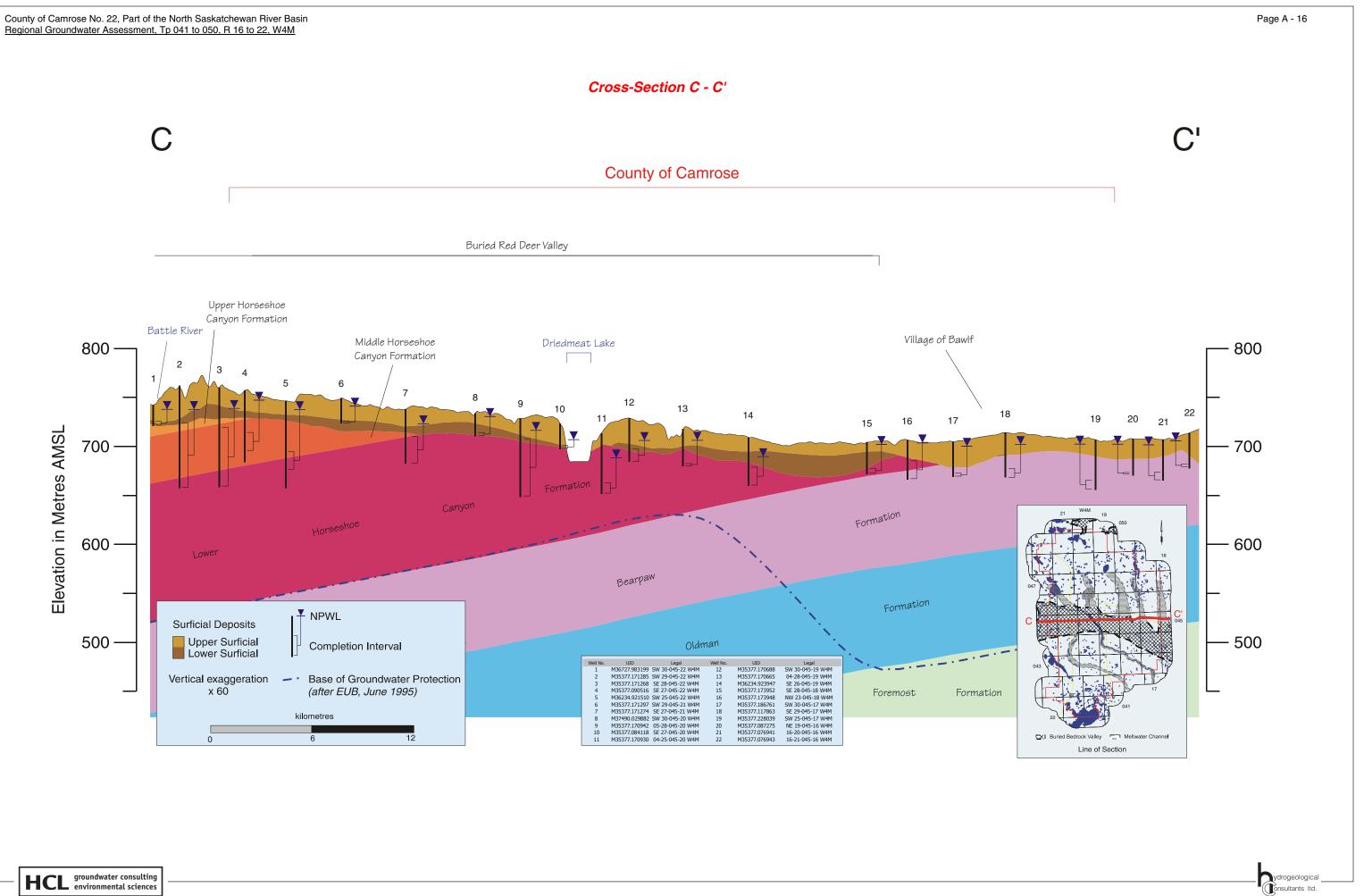
1200

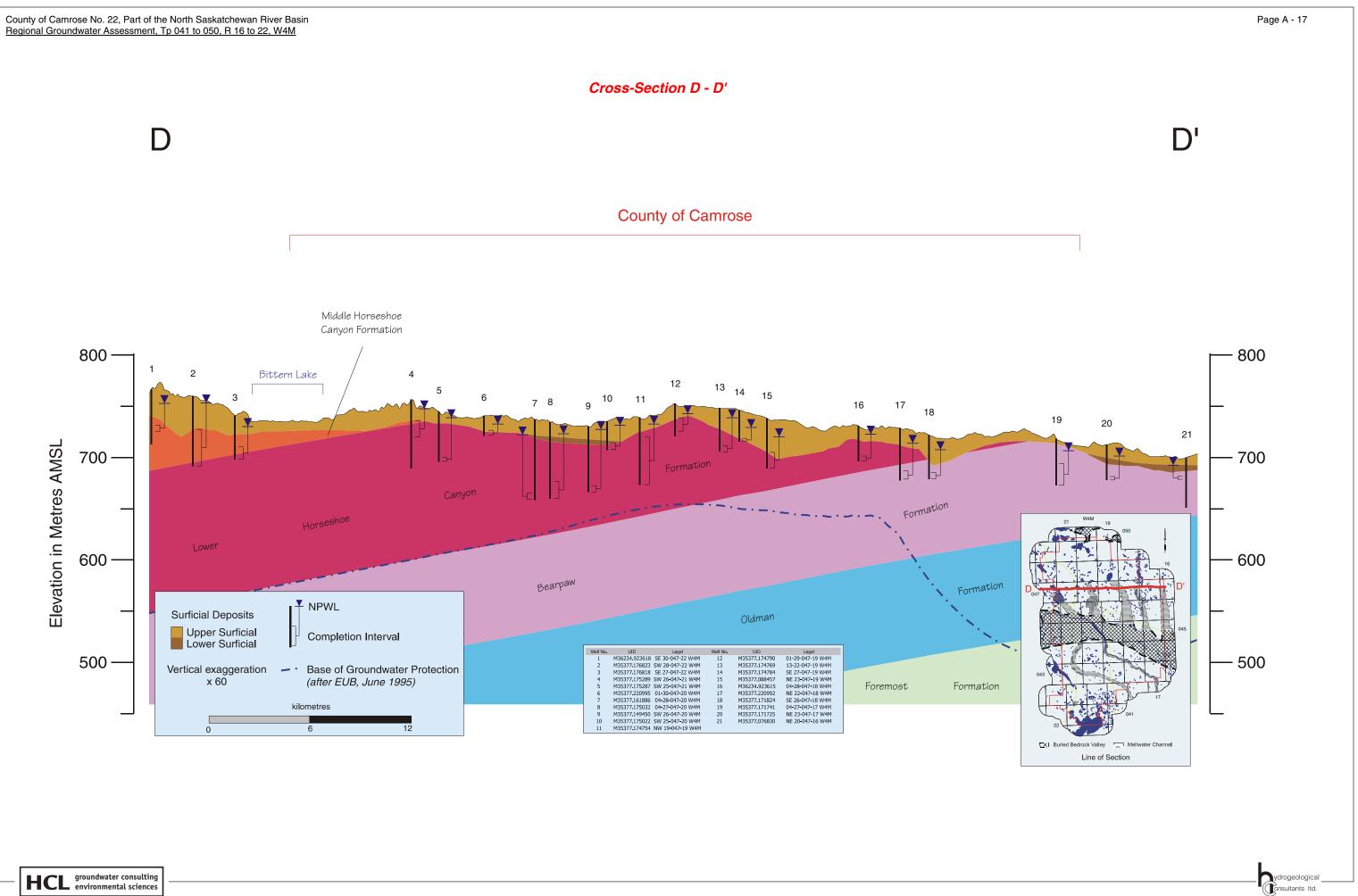

HCL groundwater consulting environmental sciences

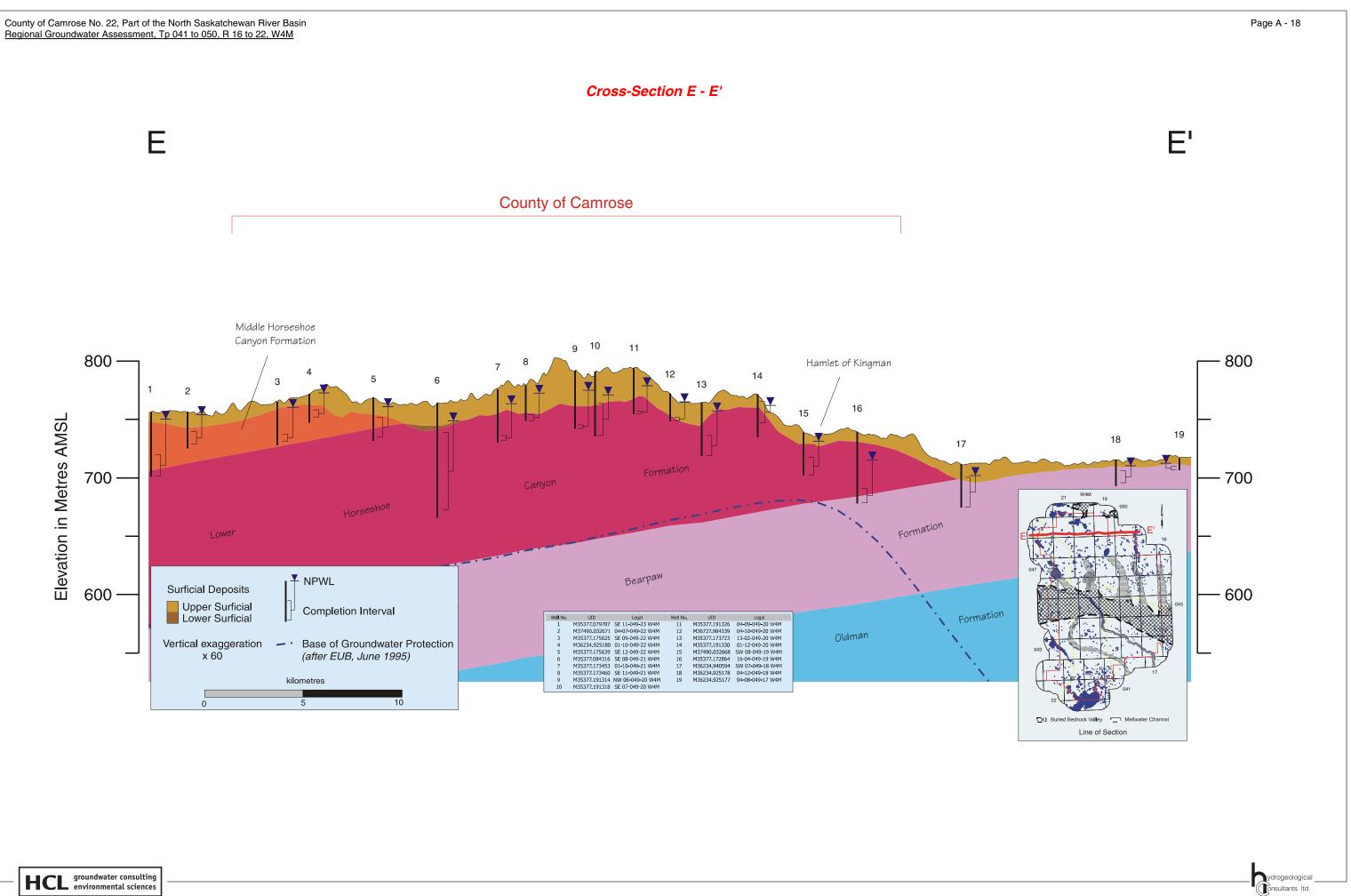
	Zone
verage iness (m)	Designation
<30	First Sand and Gravel
<2	Upper Ardley Coal Zone
~20	Ardley Coal Zone (main seam)
<1	Nevis Coal Seam
<25	Lethbridge Coal Zone
	Taber Coal Zone
	McKay Coal Zone

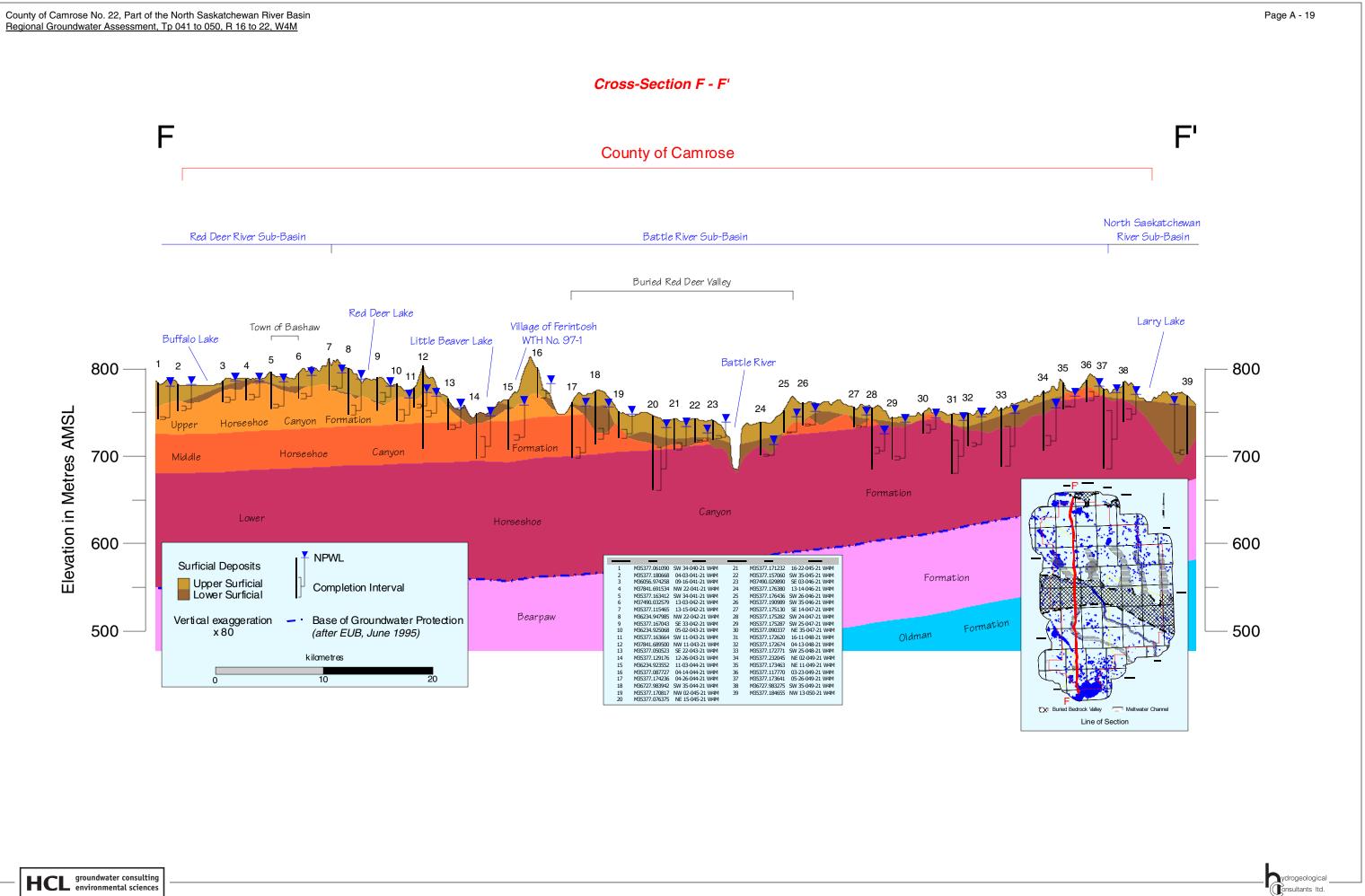


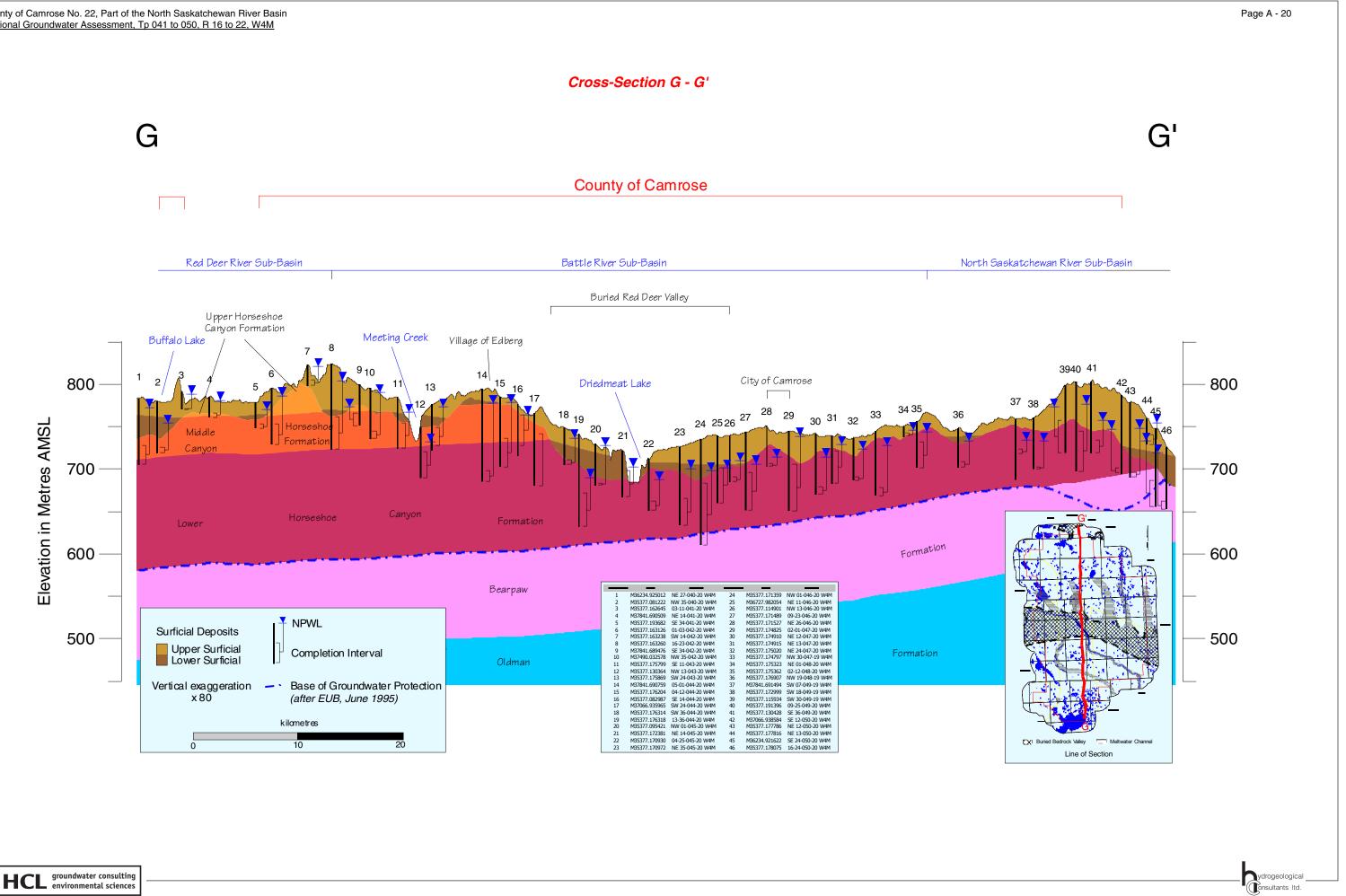


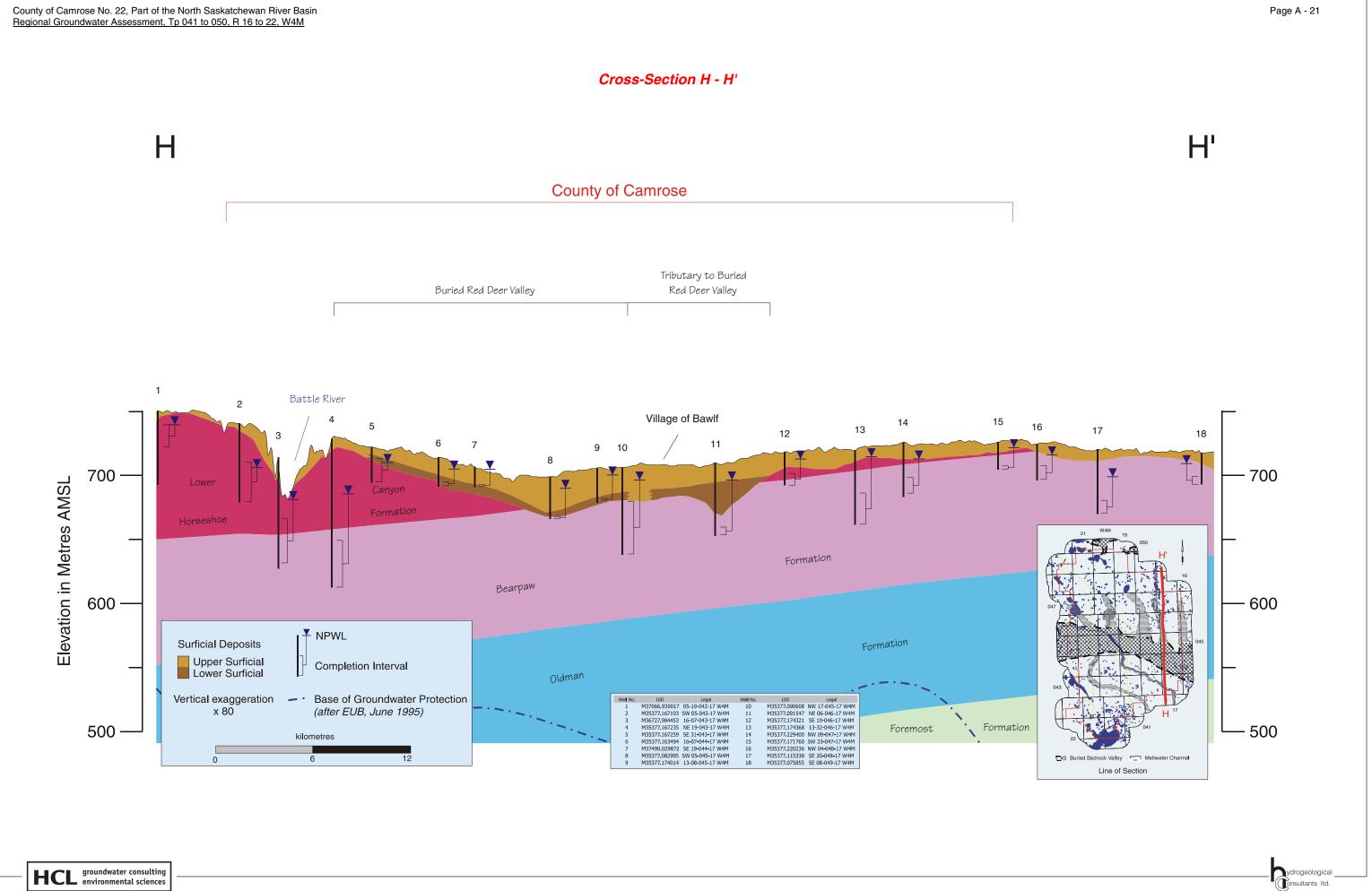

2004 Hydrogeological Consultants (HCL)

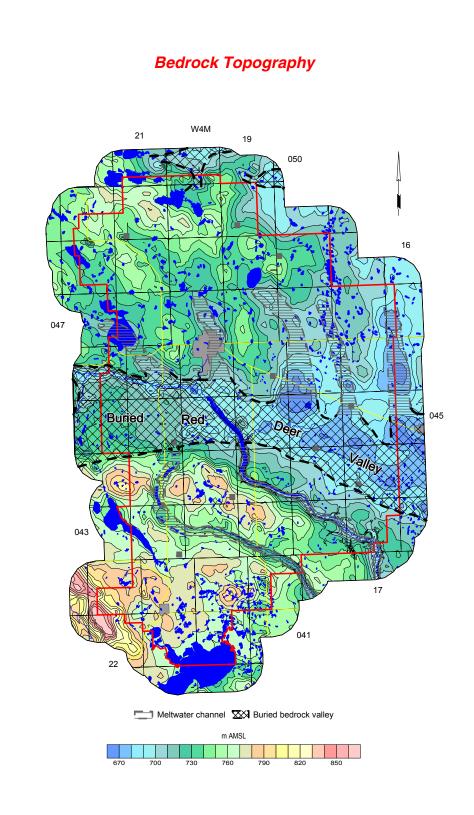



1971, 1979 Alberta Geological Survey

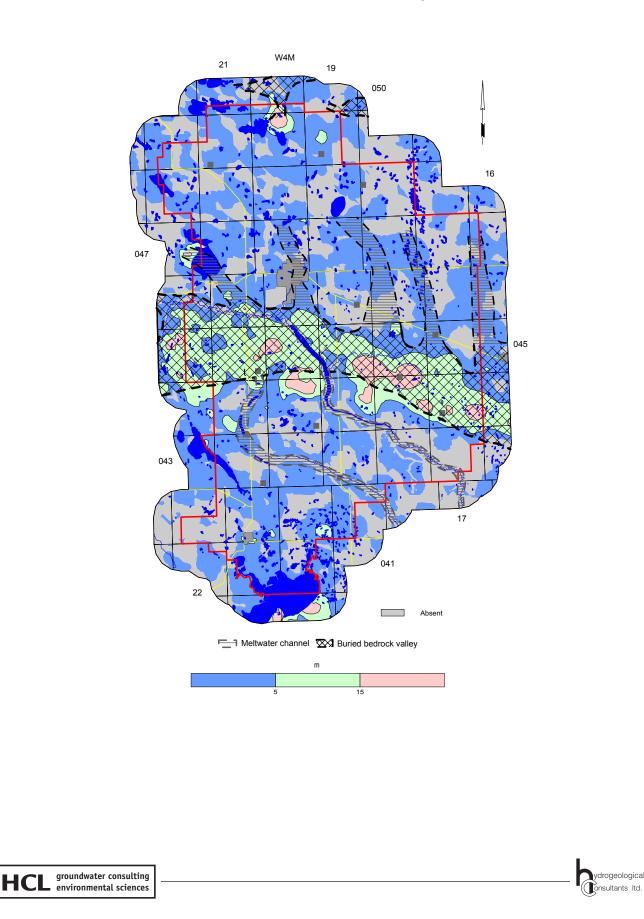


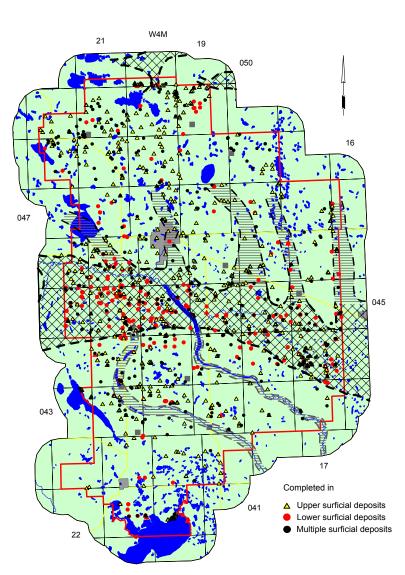






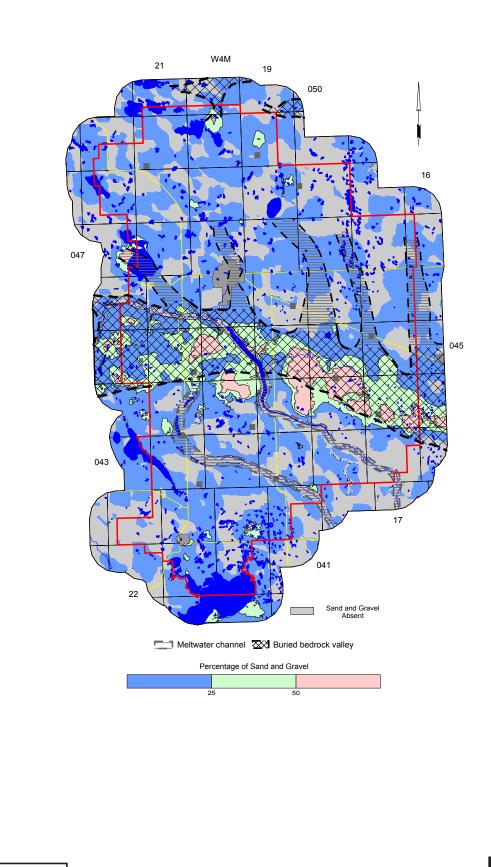
HCL groundwater consulting environmental sciences

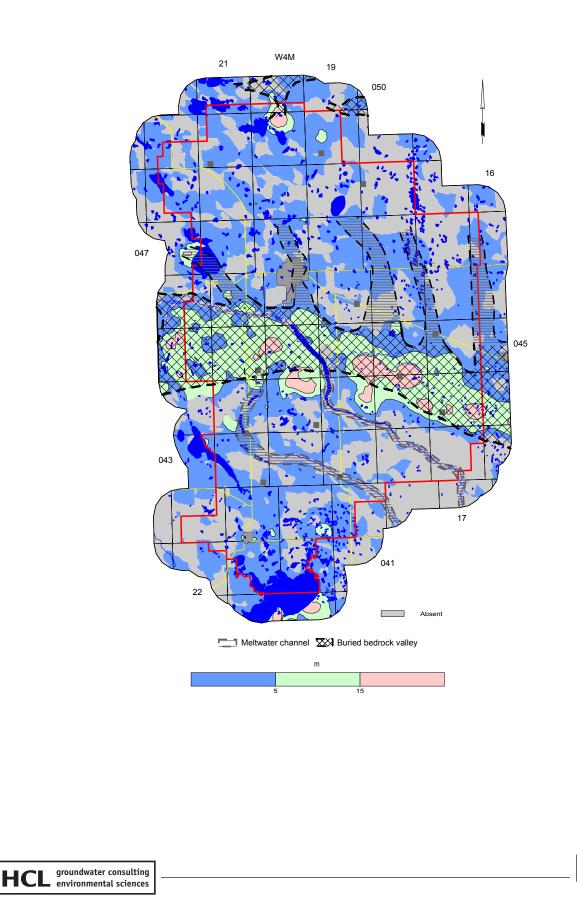




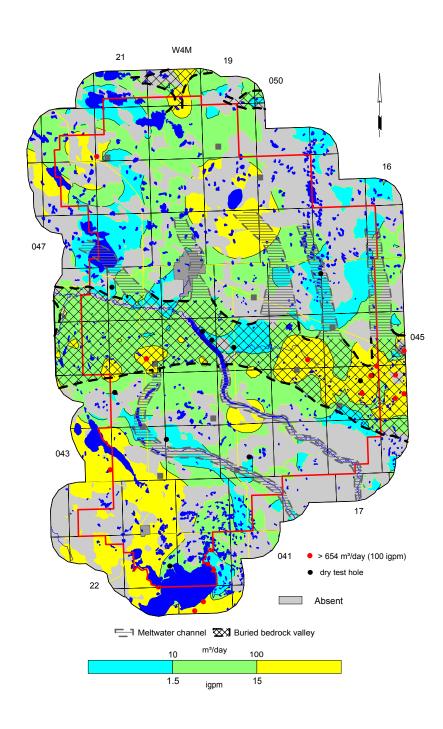
ydrogeological

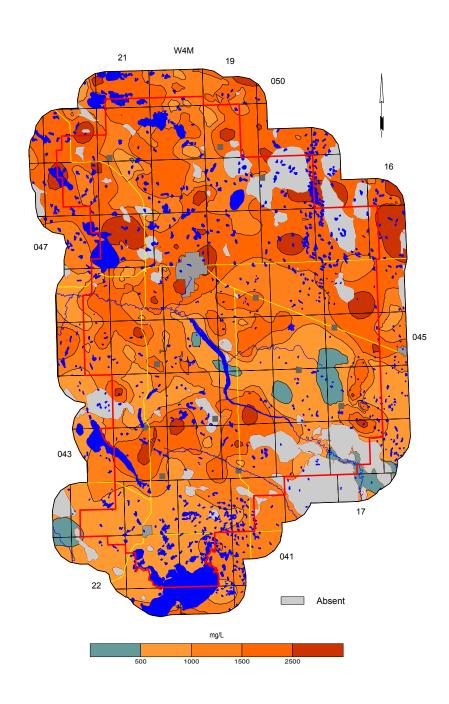
Thickness of Sand and Gravel Deposits

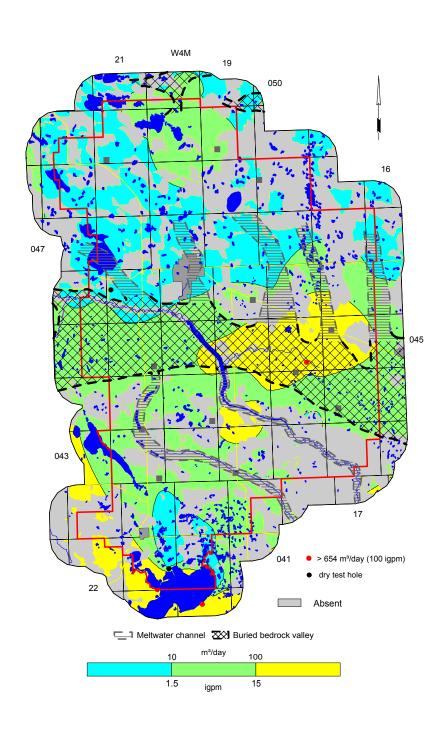


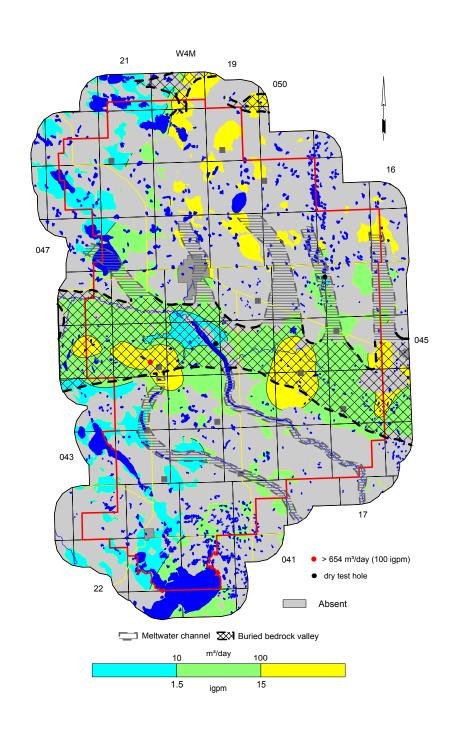


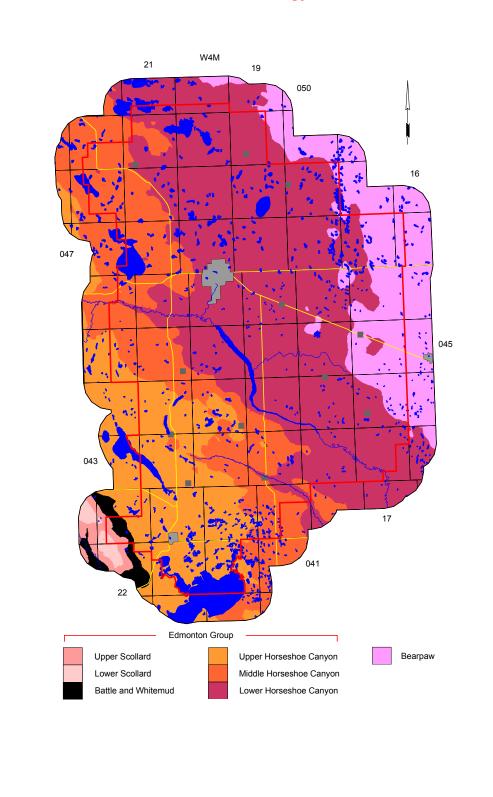
Meltwater channel 🕅 Buried bedrock valley



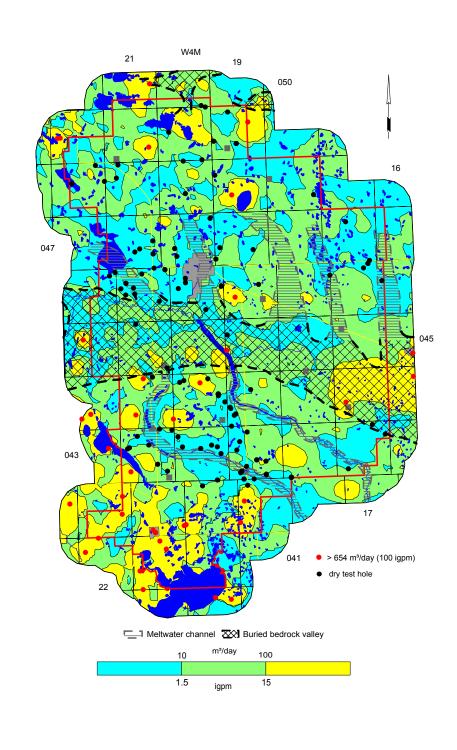

Thickness of Sand and Gravel Aquifer(s)



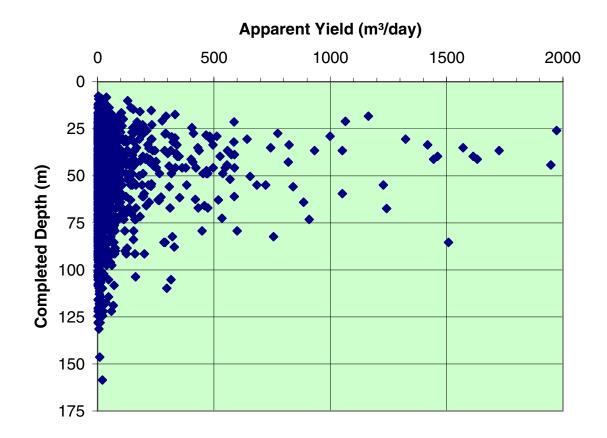



Apparent Yield for Water Wells Completed through Upper Sand and Gravel Aquifer

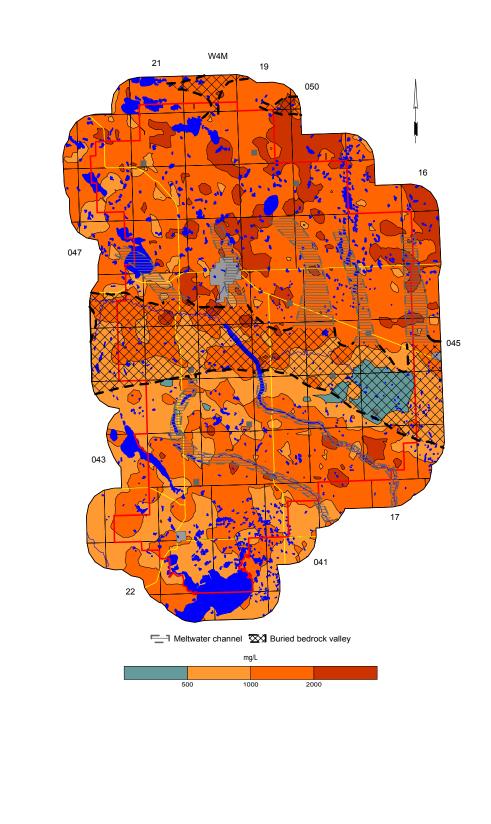
Apparent Yield for Water Wells Completed through Lower Sand and Gravel Aquifer

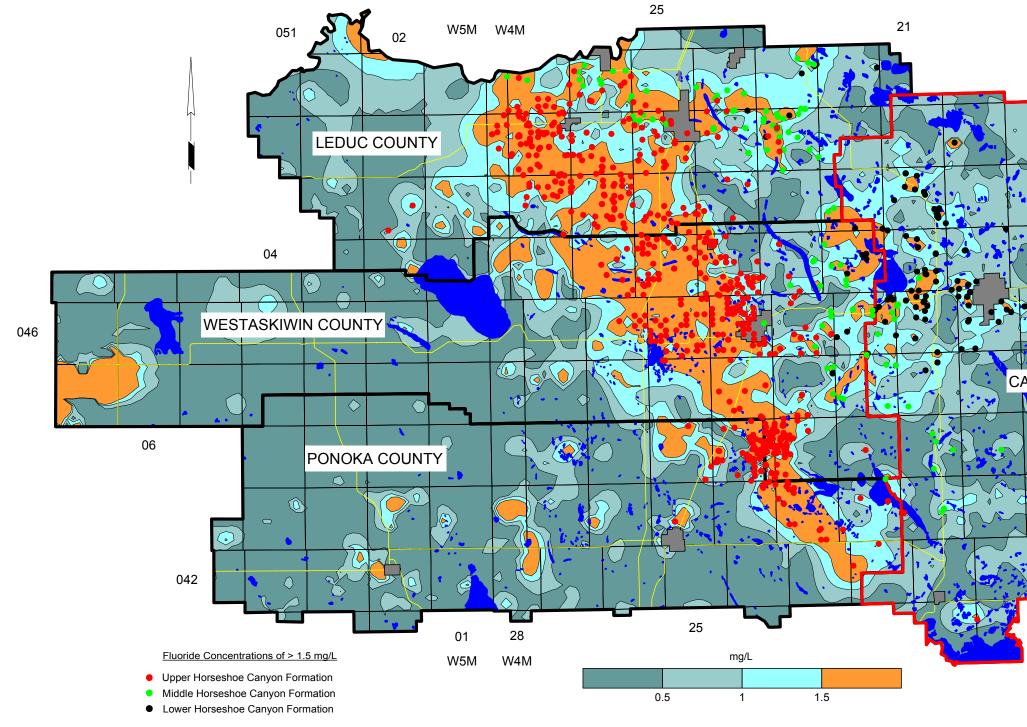


Bedrock Geology



Piper Diagrams SO4 Mg 80 80 60 40 20 20 40 60 Са HCO3 CI Na Surficial Deposits Mg SO4 80 60 80 60 20 40 20 Са HCO3 CI Na **Bedrock Aquifers**





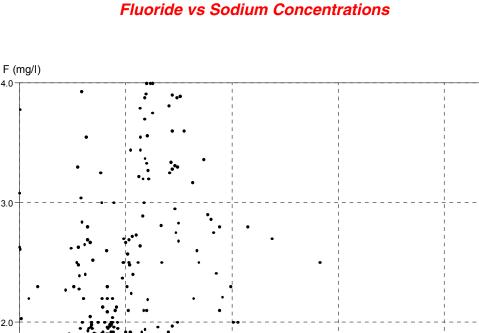
Fluoride in Groundwater from Upper Bedrock Aquifer(s) in Camrose County and Surrounding Counties

ydrogeological onsultants Itd. 4.0

3.0

2.0

1.0


0.0 ò

400

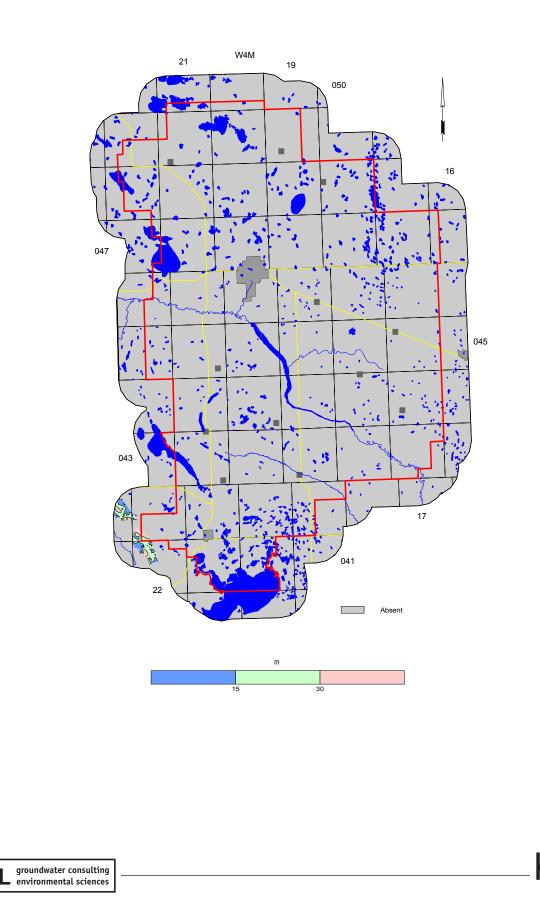
800

Na (mg/l)

٩,

1200

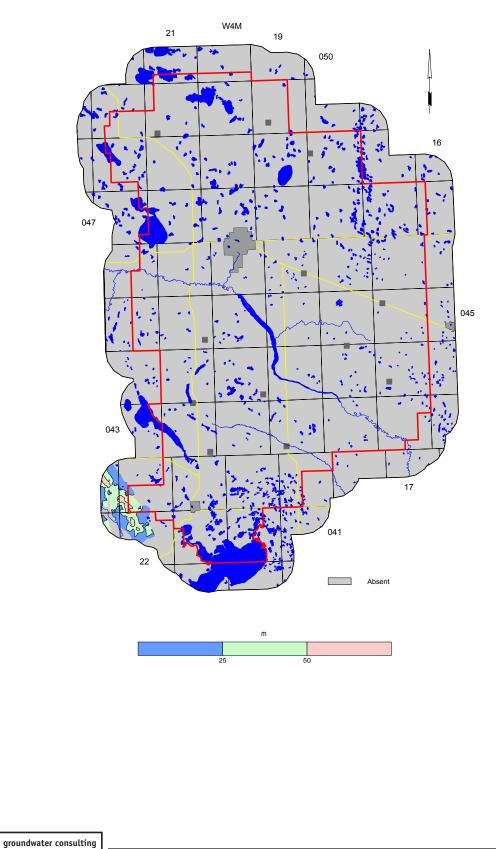
1600

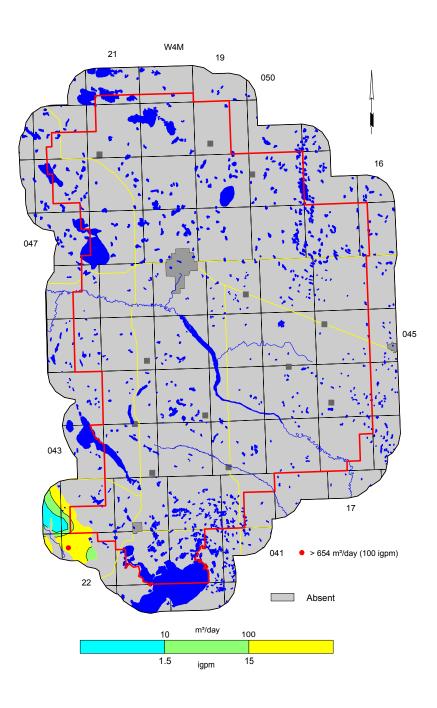

Fluoride vs Sodium Concentrations

groundwater consulting HC environmental sciences

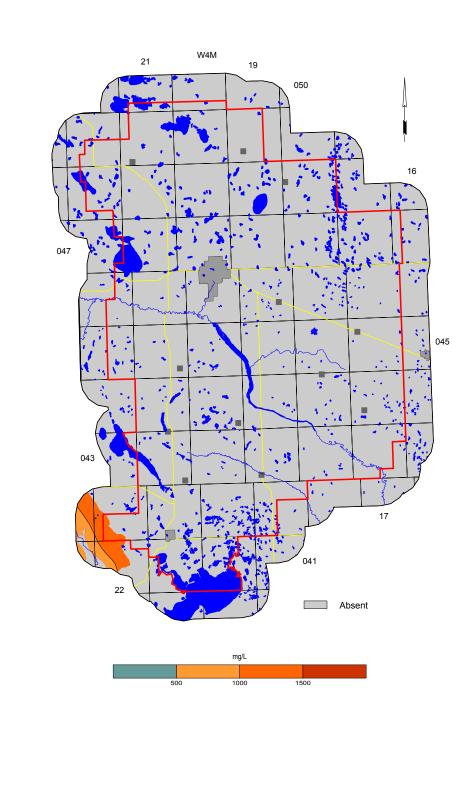
drogeological Consultants Itd.

HC

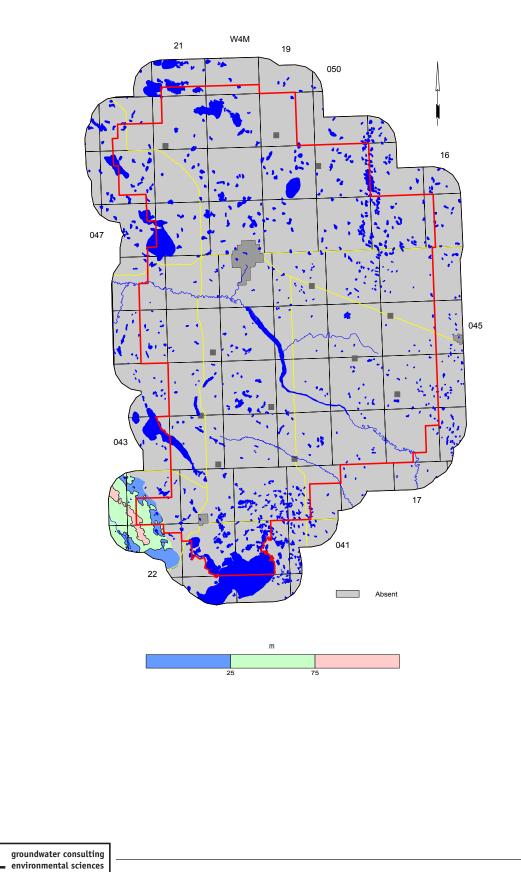


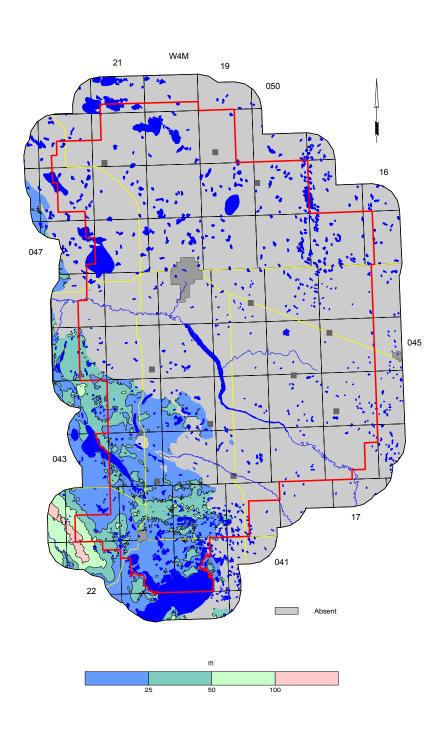

HC

environmental sciences

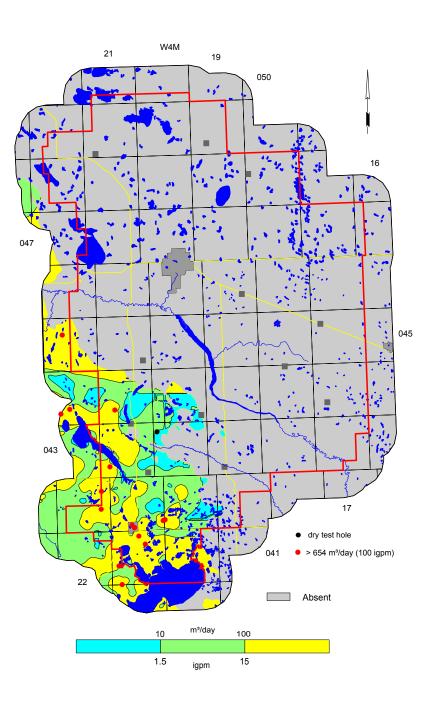


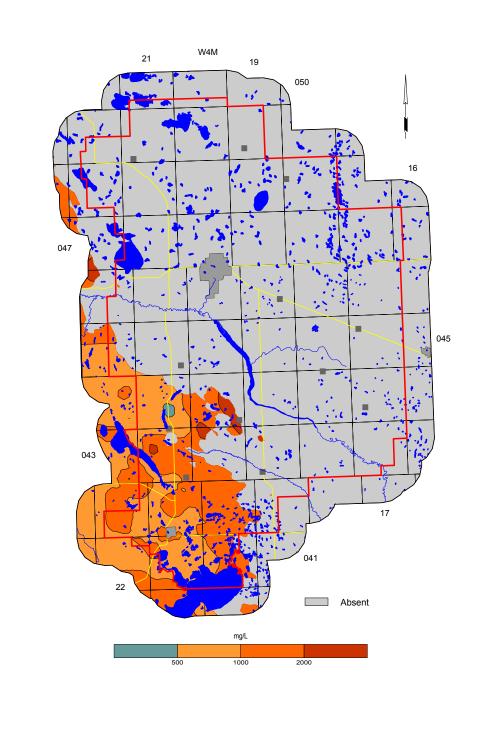
Apparent Yield for Water Wells Completed through Lower Scollard Aquifer

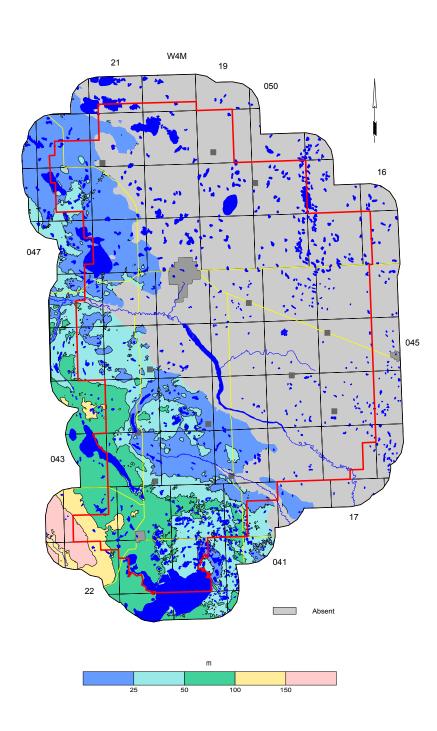




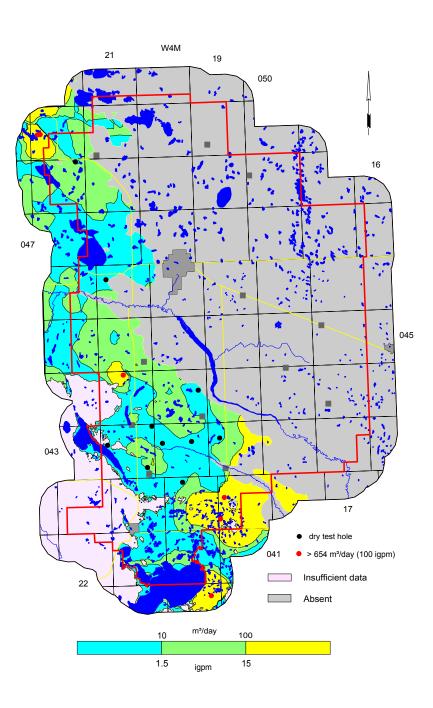
HC

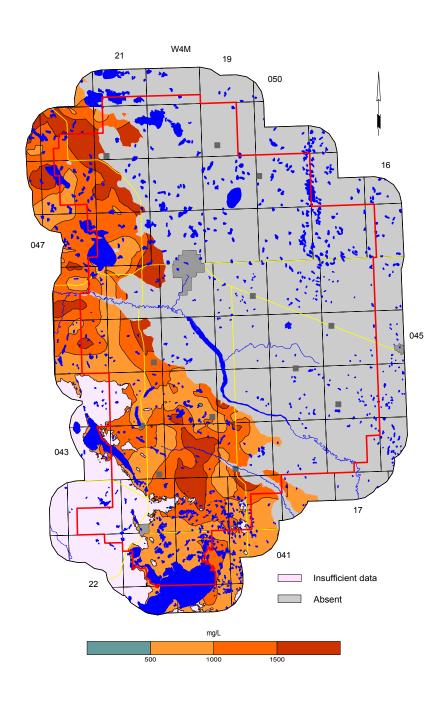

Depth to Top of Battle Formation

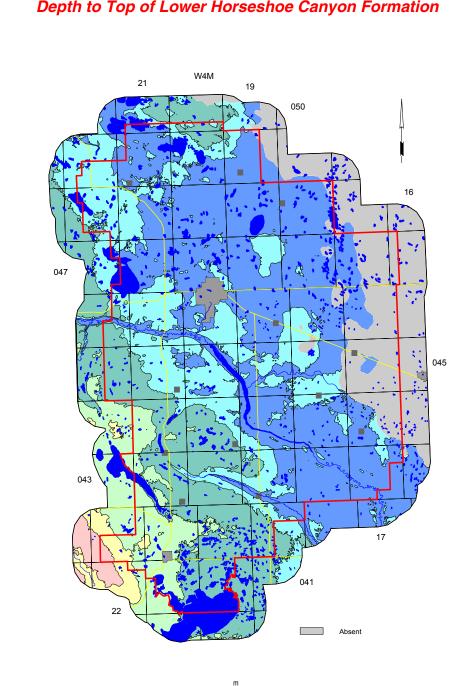



Depth to Top of Upper Horseshoe Canyon Formation

Apparent Yield for Water Wells Completed through Upper Horseshoe Canyon Aquifer


Total Dissolved Solids in Groundwater from Upper Horseshoe Canyon Aquifer



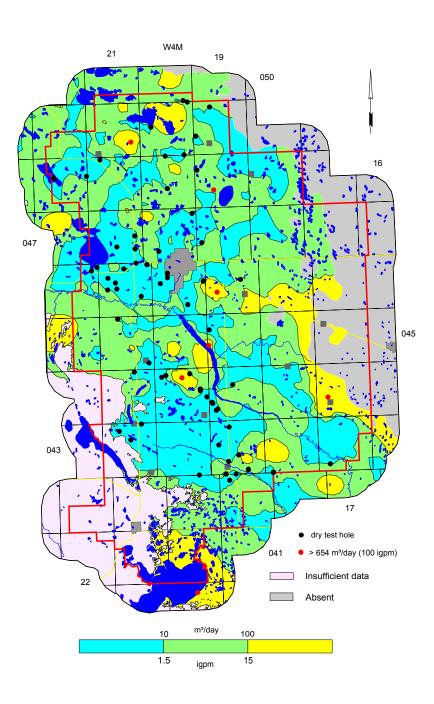

Depth to Top of Middle Horseshoe Canyon Formation

Apparent Yield for Water Wells Completed through Middle Horseshoe Canyon Aquifer

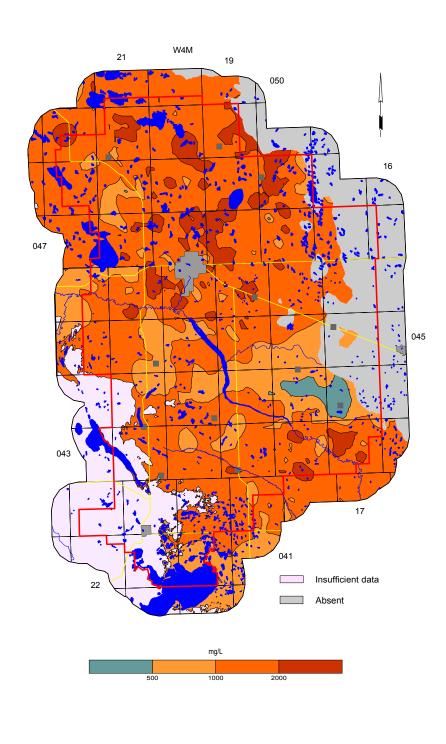
Total Dissolved Solids in Groundwater from Middle Horseshoe Canyon Aquifer

150

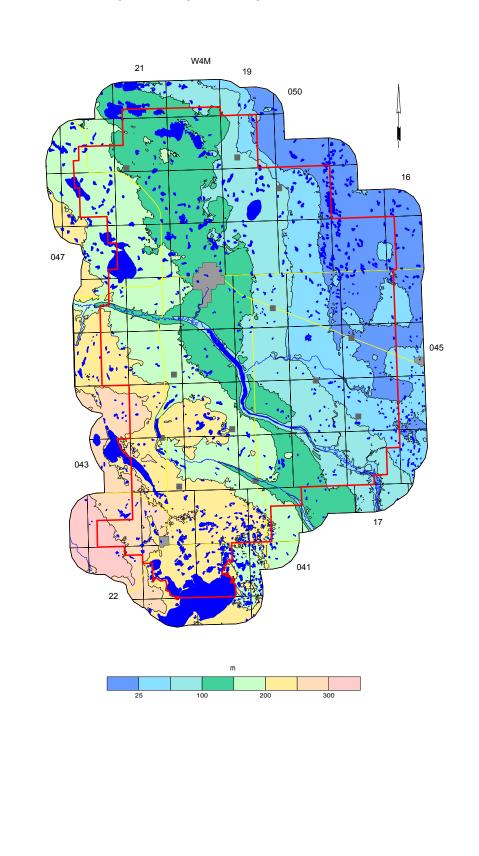
100

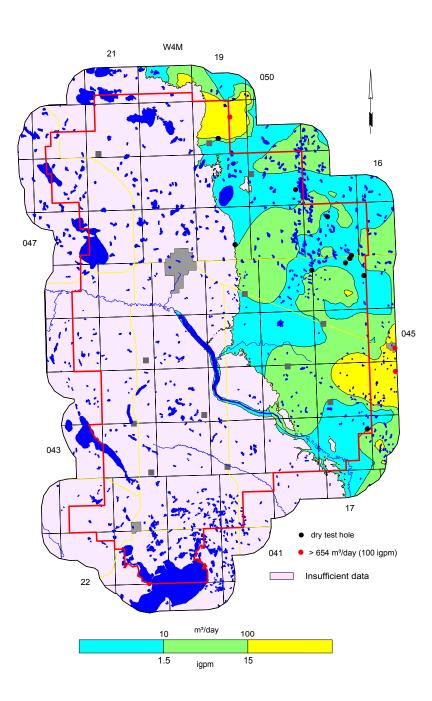

25

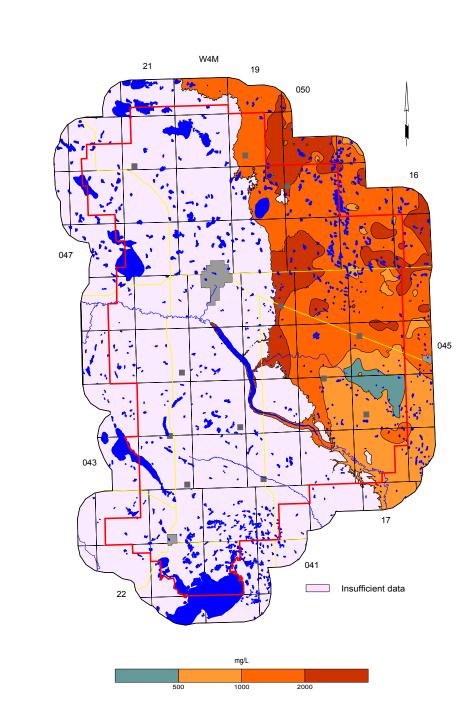
50


200

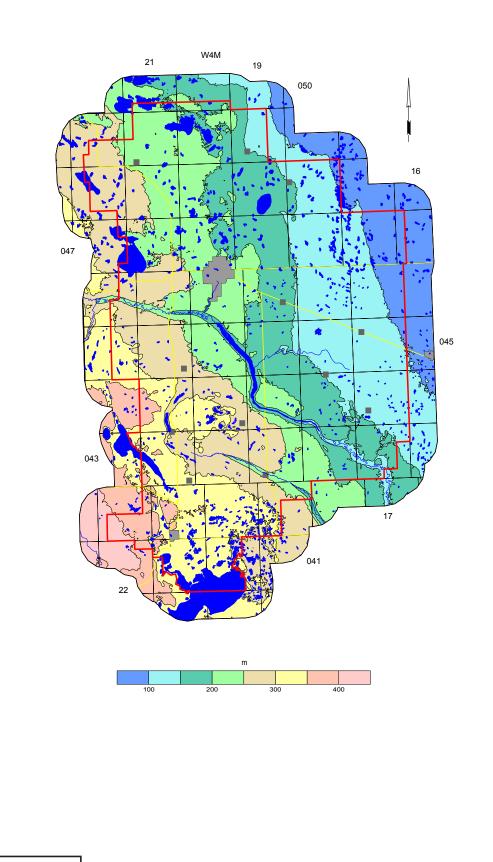
Depth to Top of Lower Horseshoe Canyon Formation

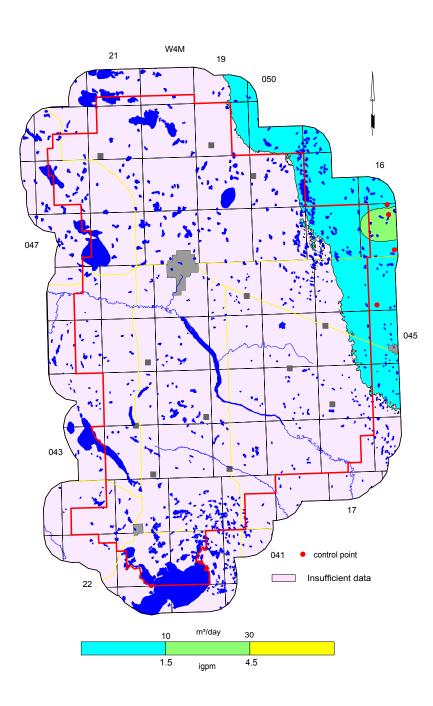

Apparent Yield for Water Wells Completed through Lower Horseshoe Canyon Aquifer

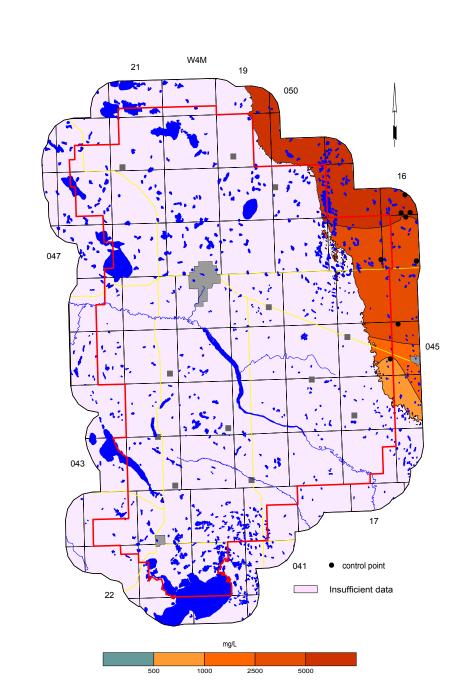

Total Dissolved Solids in Groundwater from Lower Horseshoe Canyon Aquifer



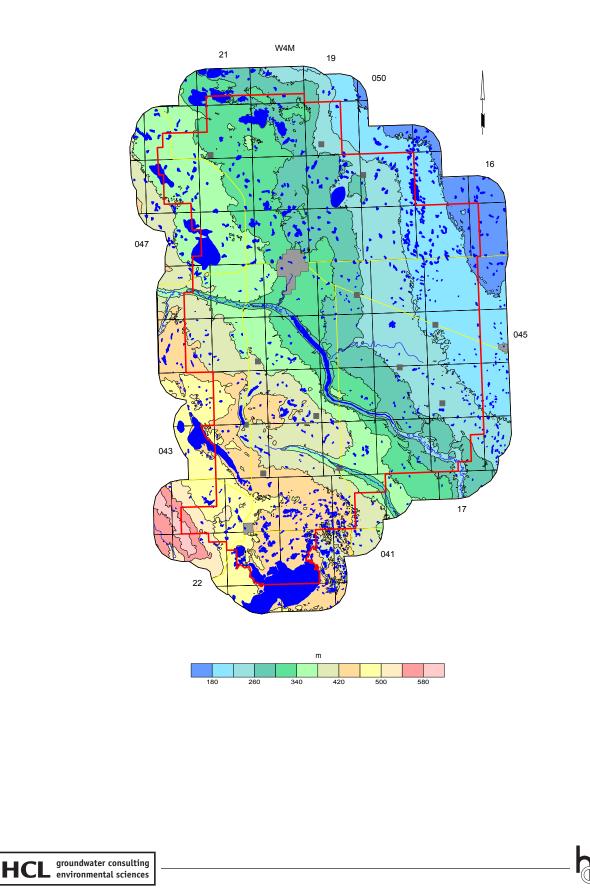
Depth to Top of Bearpaw Formation

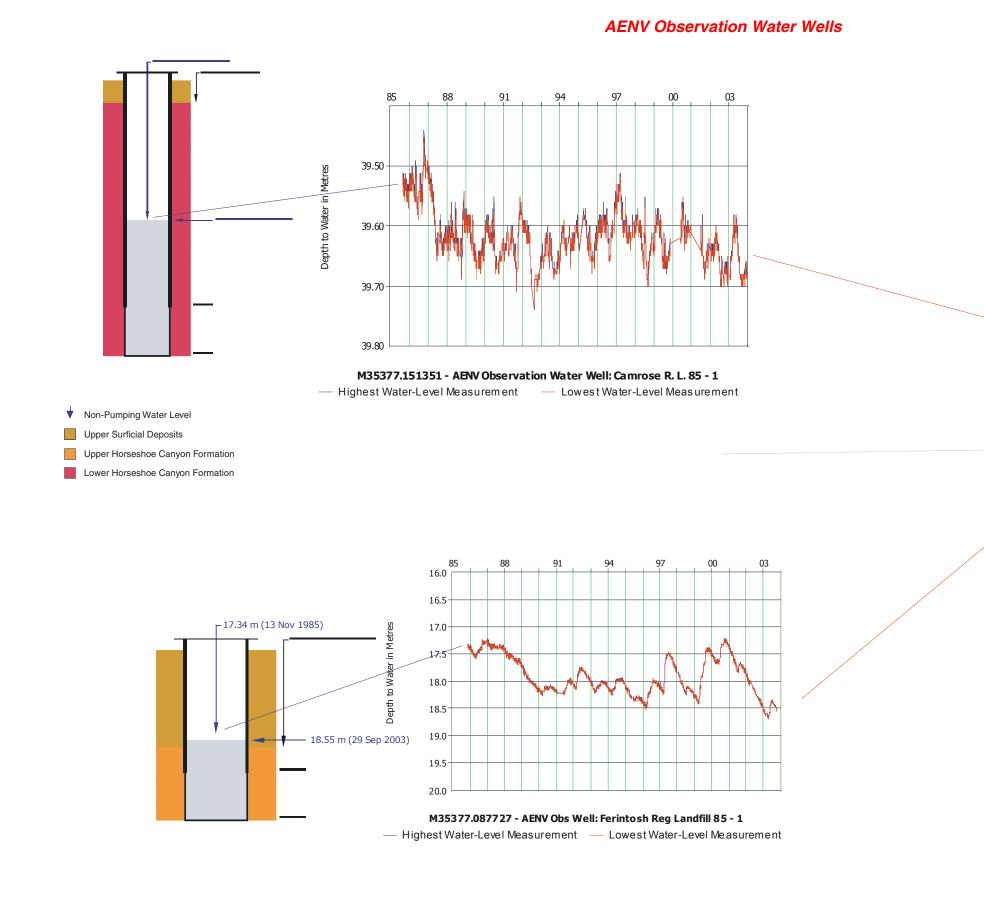




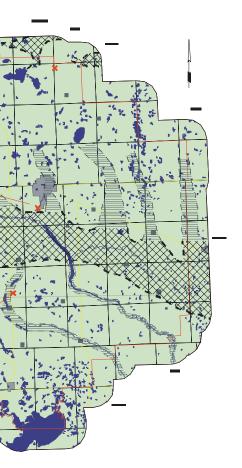

Total Dissolved Solids in Groundwater from Bearpaw Aquifer

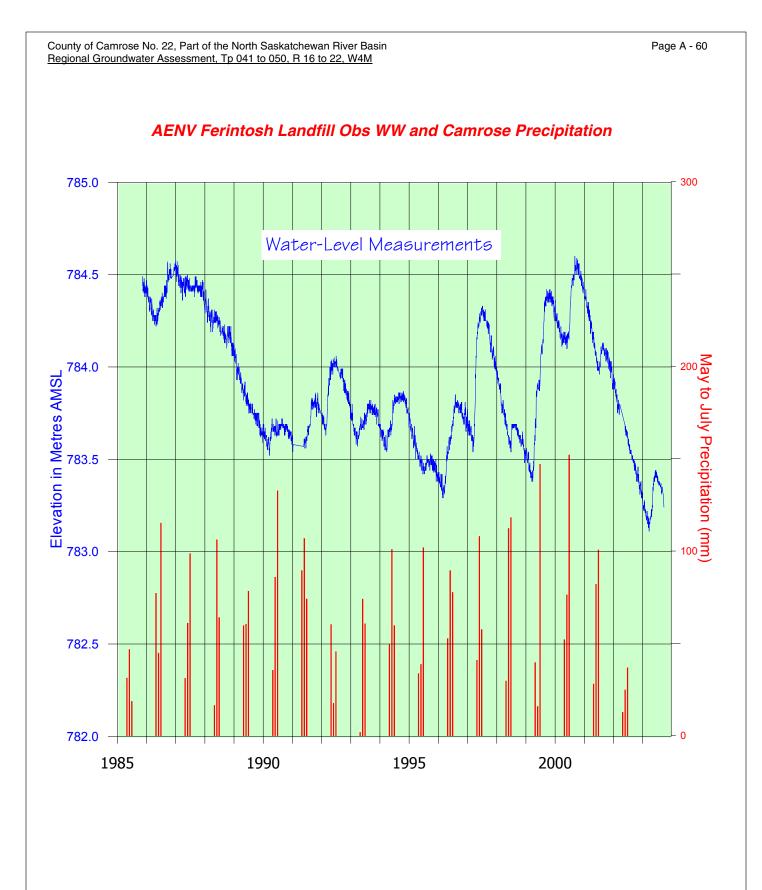
Depth to Top of Oldman Formation

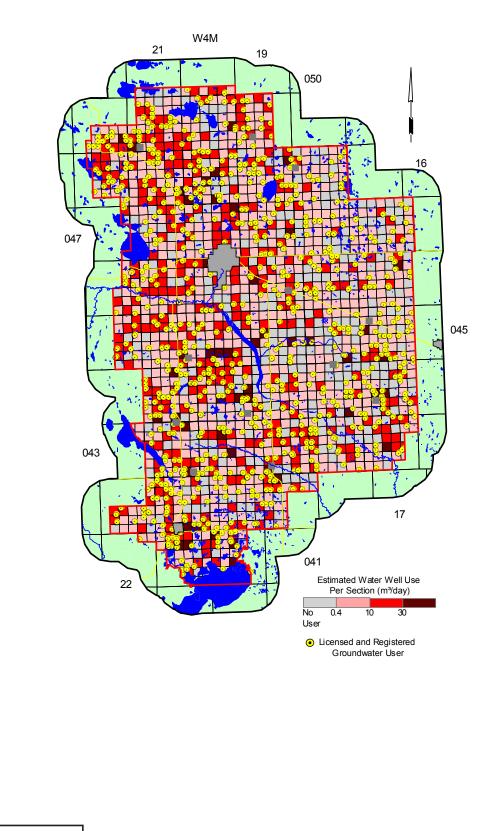


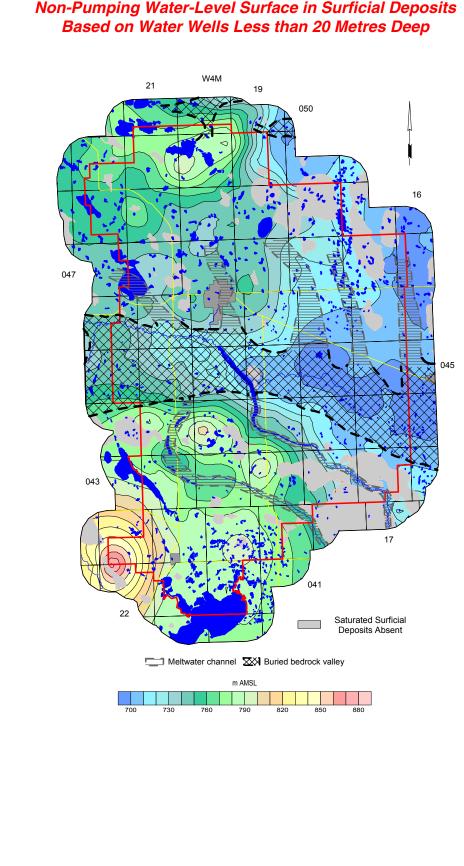


Total Dissolved Solids in Groundwater from Oldman Aquifer

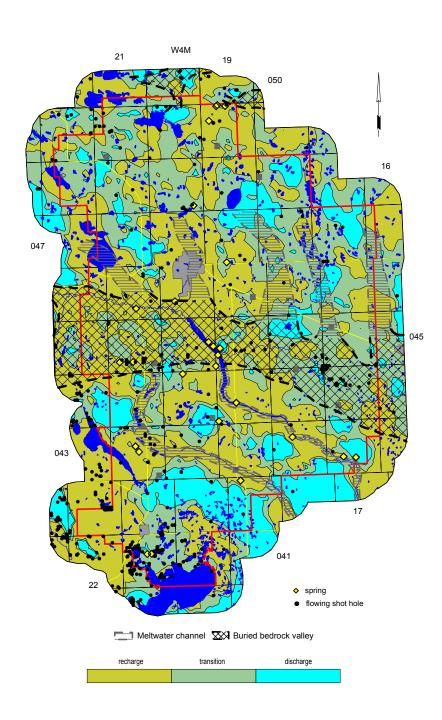

Depth to Top of Foremost Formation

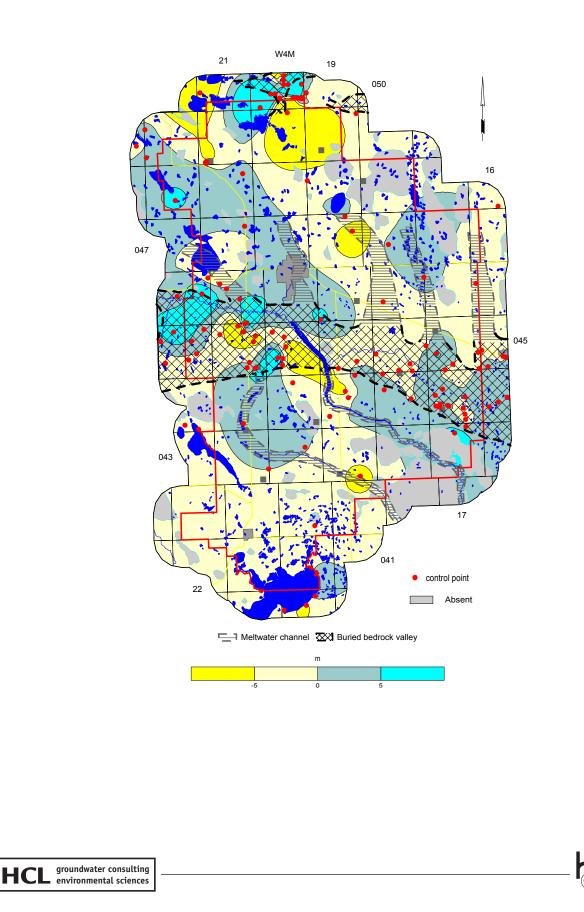

County of Camrose No. 22, Part of the North Saskatchewan River Basin Regional Groundwater Assessment, Tp 041 to 050, R 16 to 22, W4M


HCL groundwater consulting environmental sciences

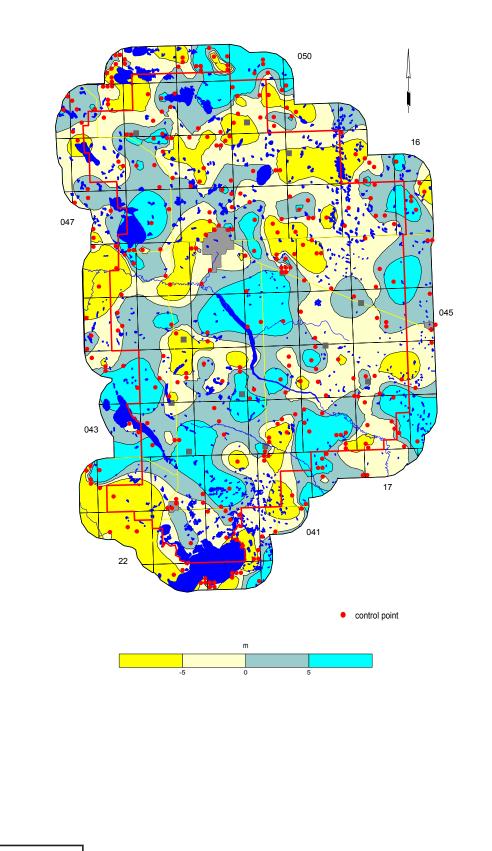


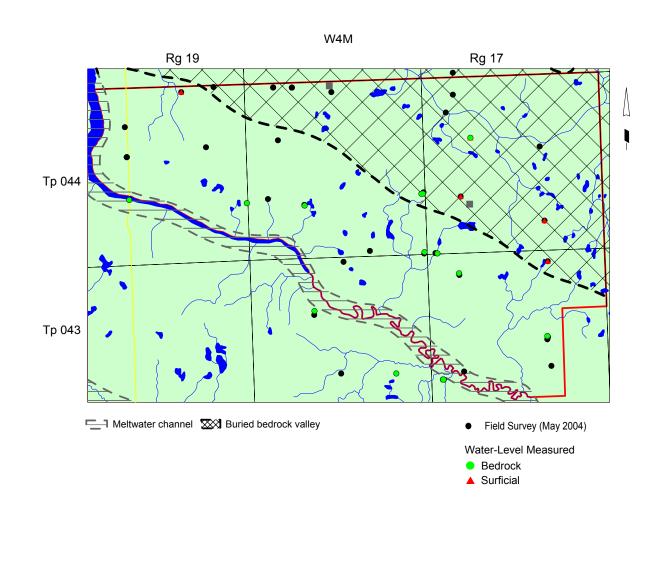
ydrogeological onsultants Itd.

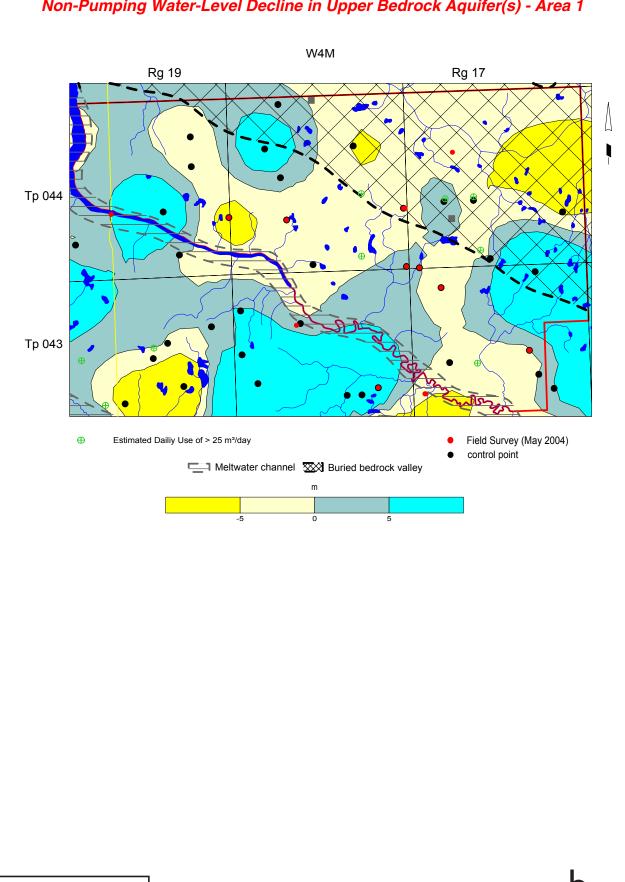

Estimated Water Well Use Per Section

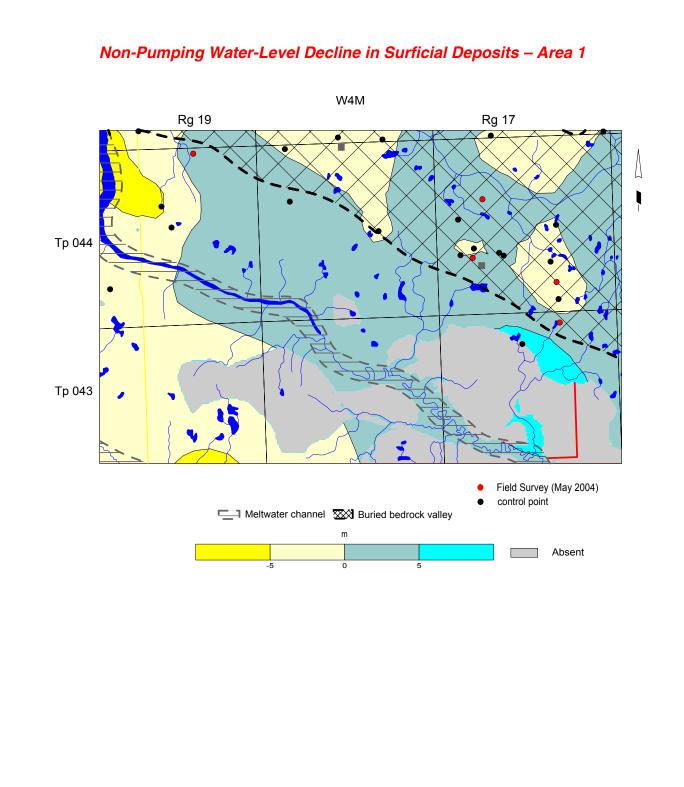


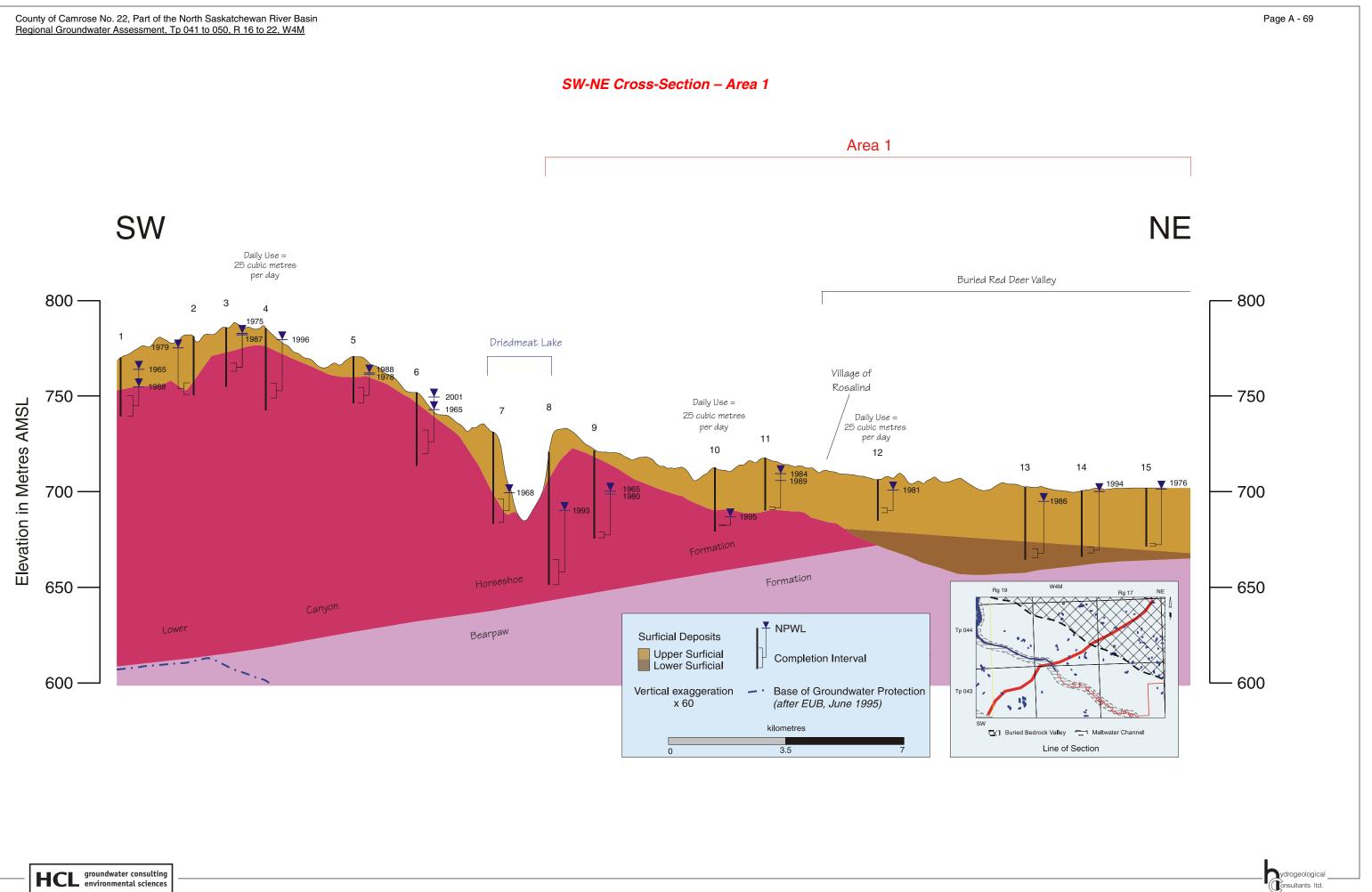
Non-Pumping Water-Level Surface in Surficial Deposits

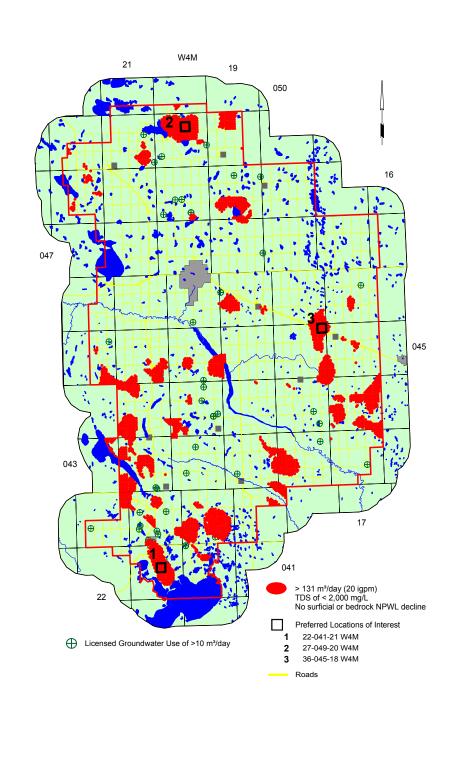


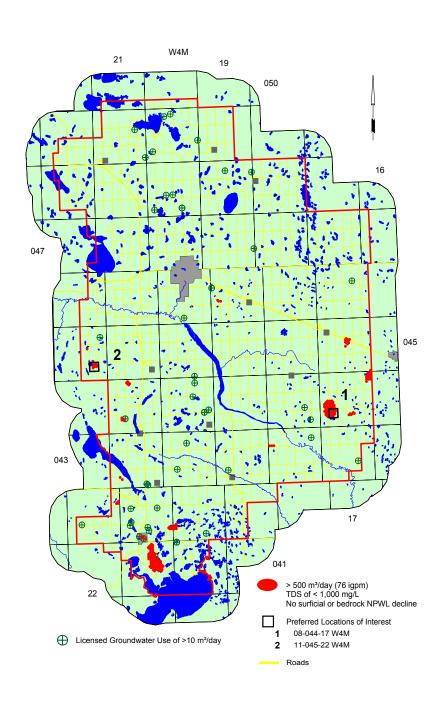




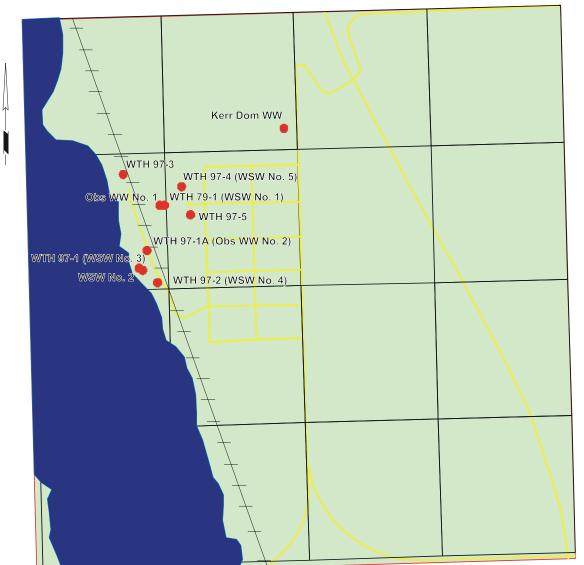



Field-Verified Water Well Survey - Area 1

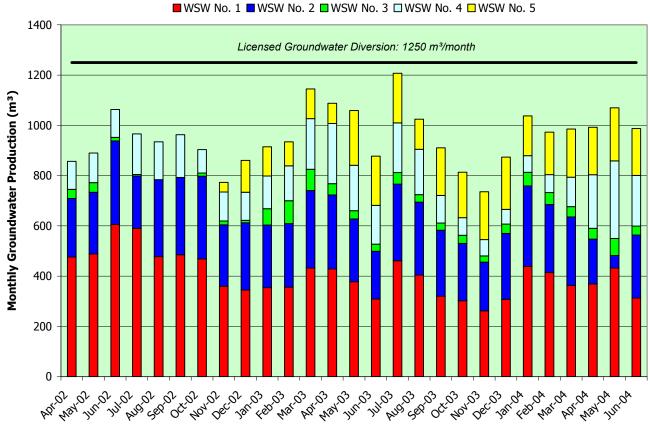

Non-Pumping Water-Level Decline in Upper Bedrock Aquifer(s) - Area 1

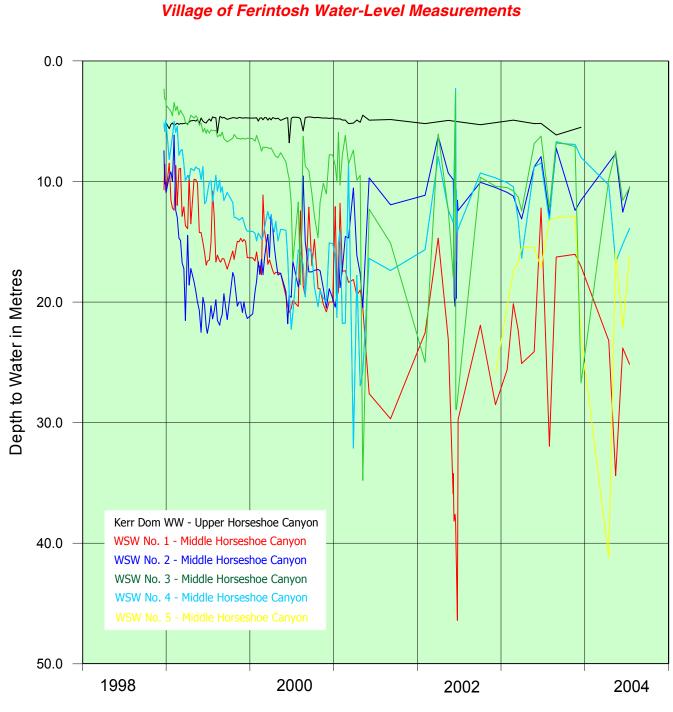


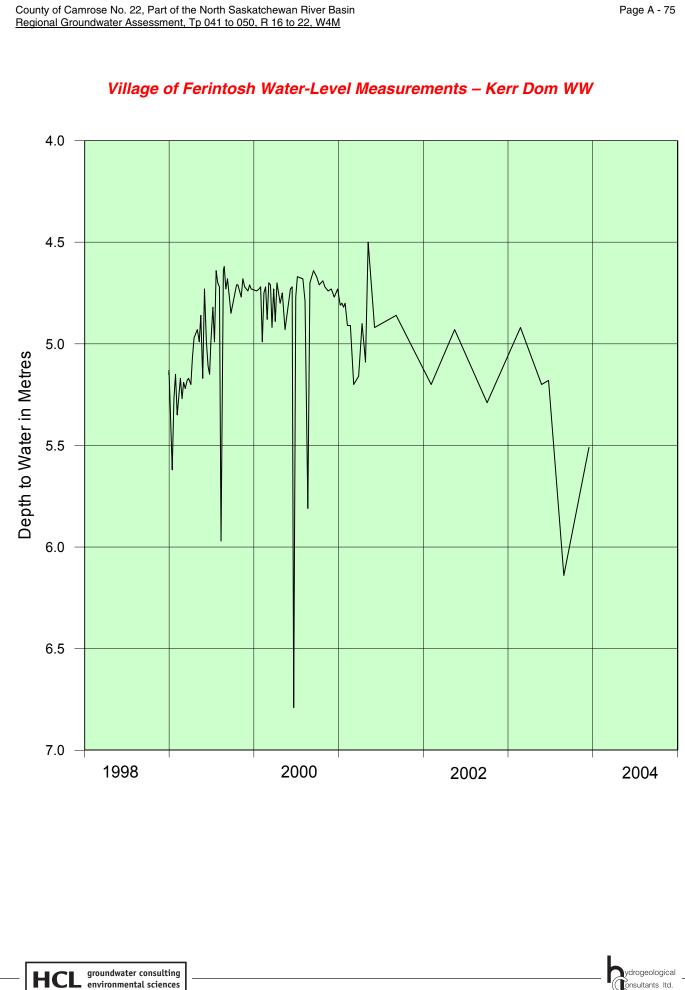
HCL groundwater consulting environmental sciences

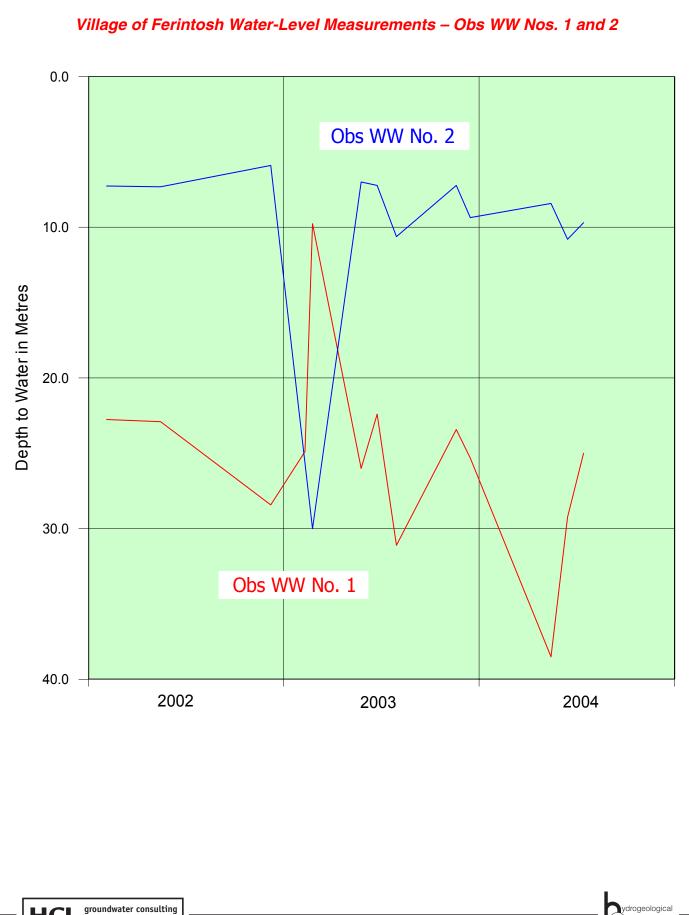

Areas of Groundwater Potential – Area 2

Areas of Groundwater Potential – Area 3

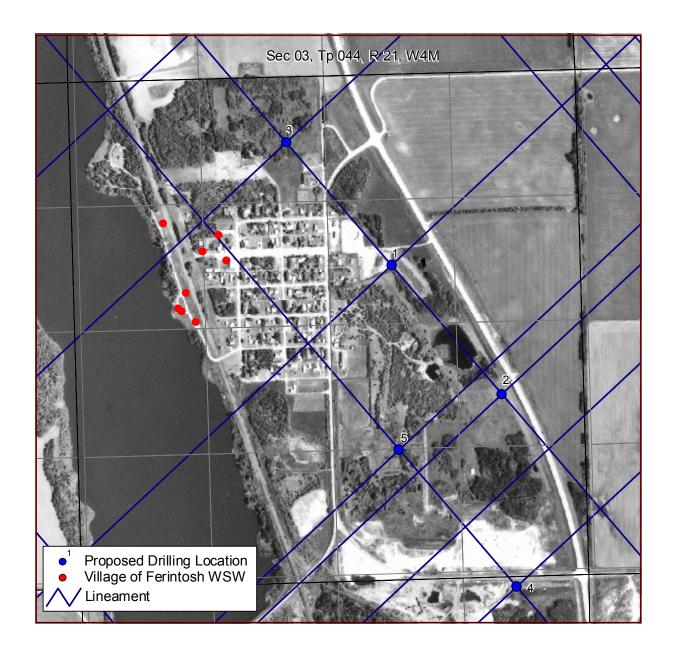

Village of Ferintosh Water Wells

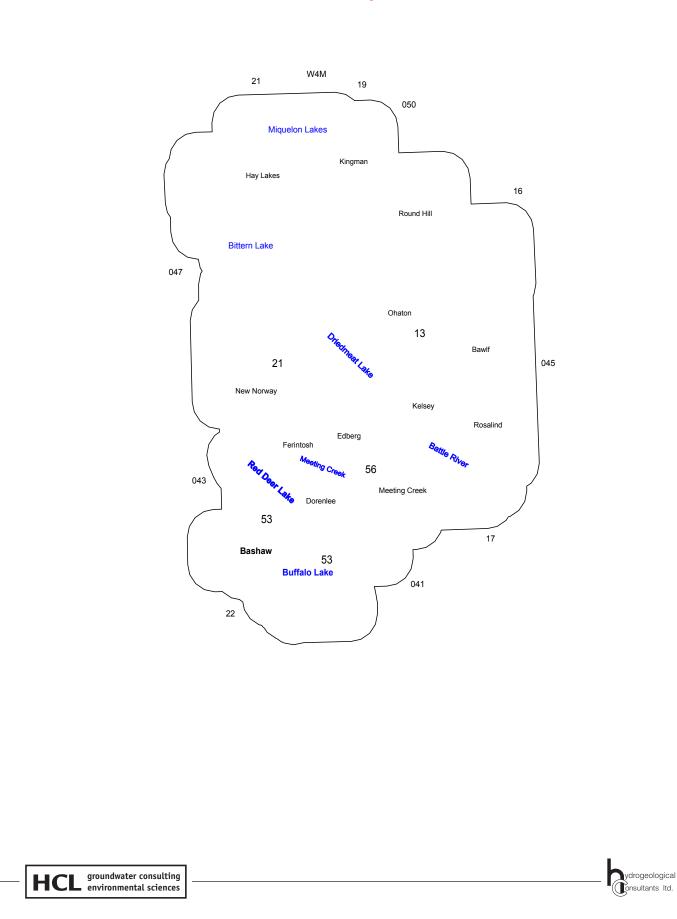

Section 03, Township 044, Range 21, W4M


HCL groundwater consulting environmental sciences


Village of Ferintosh 2002 – 2004 Monthly Groundwater Production

■ WSW No. 1 ■ WSW No. 2 ■ WSW No. 3 □ WSW No. 4 □ WSW No. 5




HC

environmental sciences

COUNTY OF CAMROSE NO. 22 Appendix B

Maps and Figures on CD-ROM

MAPS AND FIGURES ON CD-ROM

A 1) General

~	
A01	Index Map
A02	Surface Topography
A03	River Sub-Basins
A04	Percentage of Domestic, Domestic/Stock and Stock Water Wells vs Completed Depth
A05	Surface Casing Types used in Drilled Water Wells
A06	Location of Water Wells and Springs
A07	Minimum Depth of Existing Water Wells
A08	Maximum Depth of Existing Water Wells
A09	Difference Between the Maximum and Minimum Depth of Existing Water Wells
A10	Depth to Base of Groundwater Protection
A11	Hydrogeological Map (2004 Hydrogeological Consultants (HCL))
A12	Hydrogeological Map (1971, 1979 Alberta Geological Survey)
A13	Generalized Cross-Section (for terminology only)
A14	Geologic Column
A15	Cross-Section A - A'
A16	Cross-Section B - B'
A17	Cross-Section C - C'
A18	Cross-Section D - D'
A19	Cross-Section E - E'
A20	Cross-Section F - F'
A21	Cross-Section G - G'
A22	Cross-Section H - H'
A23	Bedrock Topography
A24	Bedrock Geology
A25	Relative Permeability
A26	Licensed and Registered Groundwater Water Wells
A27	Estimated Water Well Use Per Section

A28 Water Wells Recommended for Field Verification

2) Surficial Aquifers

B a) Surficial Deposits

- B01 Thickness of Surficial Deposits
- B02Non-Pumping Water-Level Surface in Surficial Deposits Based on Water Wells Less than 20 Metres DeepB03Total Dissolved Solids in Groundwater from Surficial Deposits
- **B03** I of all Dissolved Solids in Groundwater from Surficial Deposits B04 Sulfate in Groundwater from Surficial Deposits
- **B05** Nitrate + Nitrite (as N) in Groundwater from Surficial Deposits
- BUS Nitrate + Nitrite (as N) in Groundwater from Sumicial D
- **B06** Chloride in Groundwater from Surficial Deposits
- **B07** Total Hardness in Groundwater from Surficial Deposits
- B08 Piper Diagram Surficial Deposits
- B09 Thickness of Sand and Gravel Deposits
- B10 Amount of Sand and Gravel in Surficial Deposits
- B11 Thickness of Sand and Gravel Aquifer(s)
- B12 Water Wells Completed in Surficial Deposits
- B13 Apparent Yield for Water Wells Completed in Sand and Gravel Aquifer(s)
- B14 Sand and Gravel Water Well Yields vs Completed Depth
- B15 Changes in Water Levels in Surficial Deposits

b) Upper Sand and Gravel

- B16 Thickness of Upper Surficial Deposits
- B17 Thickness of Upper Sand and Gravel (not all drill holes fully penetrate surficial deposits)
- B18 Apparent Yield for Water Wells Completed through Upper Sand and Gravel Aquifer

c) Lower Sand and Gravel

- B19 Structure-Contour Map Top of Lower Sand and Gravel Deposits
- B20 Depth to Top of Lower Sand and Gravel Deposits
- B21 Thickness of Lower Sand and Gravel
- B22 Apparent Yield for Water Wells Completed through Lower Sand and Gravel Aquifer
- B23 Non-Pumping Water-Level Surface Lower Sand and Gravel Aquifer

/drogeological

onsultants Itd.

County of Camrose No. 22, Part of the North Saskatchewan River Basin Regional Groundwater Assessment, Tp 041 to 050, R 16 to 22, W4M

3) Bedrock Aquifers

С	a) General
C01	Apparent Yield for Water Wells Completed in Upper Bedrock Aquifer(s)
C02	Bedrock Water Well Yields vs Completed Depth
C03	Total Dissolved Solids in Groundwater from Upper Bedrock Aquifer(s)
C04	Sulfate in Groundwater from Upper Bedrock Aquifer(s)
C05	Chloride in Groundwater from Upper Bedrock Aquifer(s)
C06	Fluoride in Groundwater from Upper Bedrock Aquifer(s)
C07	Fluoride in Groundwater from Upper Bedrock Aquifer(s) in Camrose County and Surrounding Counties
C08	Fluoride vs Sodium Concentrations
C09	Total Hardness of Groundwater from Upper Bedrock Aquifer(s)
C10	Piper Diagram - Bedrock Aquifer(s)
C11	Recharge/Discharge Areas between Surficial Deposits and Upper Bedrock Aquifer(s)
C12	Non-Pumping Water-Level Surface in Upper Bedrock Aquifer(s)
C13	Areas of Potential Groundwater Decline - Upper Bedrock Aquifer(s)
••••	b) Upper Scollard Formation
C14	Depth to Top of Upper Scollard Formation
C15	Structure-Contour Map - Upper Scollard Formation
010	c) Lower Scollard Formation
C16	Depth to Top of Lower Scollard Formation
C17	Structure-Contour Map - Lower Scollard Formation
•	d) Battle Formation
C18	Depth to Top of Battle Formation
C19	Structure-Contour Map - Battle Formation
015	e) Upper Horseshoe Canyon Formation
C20	Depth to Top of Upper Horseshoe Canyon Formation
C21	Structure-Contour Map - Upper Horseshoe Canyon Formation
C22	Non-Pumping Water-Level Surface - Upper Horseshoe Canyon Aquifer
C22 C23	Apparent Yield for Water Wells Completed through Upper Horseshoe Canyon Aquifer
C23 C24	Total Dissolved Solids in Groundwater from Upper Horseshoe Canyon Aquifer
C24 C25	Sulfate in Groundwater from Upper Horseshoe Canyon Aquifer
	Chloride in Groundwater from Upper Horseshoe Canyon Aquifer
C26	
C27	Fluoride in Groundwater from Upper Horseshoe Canyon Aquifer
C28	Piper Diagram - Upper Horseshoe Canyon Aquifer
000	f) Middle Horseshoe Canyon Formation
C29	Depth to Top of Middle Horseshoe Canyon Formation
C30	Structure-Contour Map - Middle Horseshoe Canyon Formation
C31	Non-Pumping Water-Level Surface - Middle Horseshoe Canyon Aquifer
C32	Apparent Yield for Water Wells Completed through Middle Horseshoe Canyon Aquifer
C33	Total Dissolved Solids in Groundwater from Middle Horseshoe Canyon Aquifer
C34	Sulfate in Groundwater from Middle Horseshoe Canyon Aquifer
C35	Chloride in Groundwater from Middle Horseshoe Canyon Aquifer
C36	Fluoride in Groundwater from Middle Horseshoe Canyon Aquifer
C37	Piper Diagram - Middle Horseshoe Canyon Aquifer
• • •	g) Lower Horseshoe Canyon Formation
C38	Depth to Top of Lower Horseshoe Canyon Formation
C39	Structure-Contour Map - Lower Horseshoe Canyon Formation
C40	Non-Pumping Water-Level Surface - Lower Horseshoe Canyon Aquifer
C41	Apparent Yield for Water Wells Completed through Lower Horseshoe Canyon Aquifer
C42	Total Dissolved Solids in Groundwater from Lower Horseshoe Canyon Aquifer
C43	Sulfate in Groundwater from Lower Horseshoe Canyon Aquifer
C44	Chloride in Groundwater from Lower Horseshoe Canyon Aquifer
C45	Fluoride in Groundwater from Lower Horseshoe Canyon Aquifer
C46	Piper Diagram - Lower Horseshoe Canyon Aquifer

County of Camrose No. 22, Part of the North Saskatchewan River Basin Regional Groundwater Assessment, Tp 041 to 050, R 16 to 22, W4M

	h) Bearpaw Formation
C47	Depth to Top of Bearpaw Formation
C48	Structure-Contour Map - Bearpaw Formation
C49	Non-Pumping Water-Level Surface - Bearpaw Aquifer
C50	Apparent Yield for Water Wells Completed through Bearpaw Aquifer
C51	Total Dissolved Solids in Groundwater from Bearpaw Aquifer
C52	Sulfate in Groundwater from Bearpaw Aquifer
C53	Chloride in Groundwater from Bearpaw Aquifer
C54	Fluoride in Groundwater from Bearpaw Aquifer
C55	Piper Diagram - Bearpaw Aquifer
	i) Oldman Formation
C56	Depth to Top of Oldman Formation
C57	Structure-Contour Map - Oldman Formation
C58	Non-Pumping Water-Level Surface - Oldman Aquifer
C59	Apparent Yield for Water Wells Completed through Oldman Aquifer
C60	Total Dissolved Solids in Groundwater from Oldman Aquifer
C61	Sulfate in Groundwater from Oldman Aquifer
C62	Chloride in Groundwater from Oldman Aquifer
C63	Fluoride in Groundwater from Oldman Aquifer
	j) Foremost Formation
C64	Depth to Top of Foremost Formation
C65	Structure-Contour Map - Foremost Formation
D	4) Hydrographs and Observation Water Wells
D D01	4) Hydrographs and Observation Water Wells Hydrographs
D01	Hydrographs
D01 D02 D03	Hydrographs Precipitation vs Water Levels in AENV Obs WW Camrose Reg Landfill Water-Level Measurements in AENV Obs WW Ferintosh Reg Landfill
D01 D02	 Hydrographs Precipitation vs Water Levels in AENV Obs WW Camrose Reg Landfill Water-Level Measurements in AENV Obs WW Ferintosh Reg Landfill 5) Specific Areas
D01 D02 D03 E	 Hydrographs Precipitation vs Water Levels in AENV Obs WW Camrose Reg Landfill Water-Level Measurements in AENV Obs WW Ferintosh Reg Landfill 5) Specific Areas a) Area 1 - North Slope of Battle River
D01 D02 D03 E E01	 Hydrographs Precipitation vs Water Levels in AENV Obs WW Camrose Reg Landfill Water-Level Measurements in AENV Obs WW Ferintosh Reg Landfill 5) Specific Areas a) Area 1 - North Slope of Battle River Field-Verified Water Well Survey - Area 1
D01 D02 D03 E E01 E02	 Hydrographs Precipitation vs Water Levels in AENV Obs WW Camrose Reg Landfill Water-Level Measurements in AENV Obs WW Ferintosh Reg Landfill 5) Specific Areas a) Area 1 - North Slope of Battle River Field-Verified Water Well Survey - Area 1 Non-Pumping Water-Level Decline in Upper Bedrock Aquifer(s) - Area 1
D01 D02 D03 E E01 E02 E03	 Hydrographs Precipitation vs Water Levels in AENV Obs WW Camrose Reg Landfill Water-Level Measurements in AENV Obs WW Ferintosh Reg Landfill 5) Specific Areas a) Area 1 - North Slope of Battle River Field-Verified Water Well Survey - Area 1 Non-Pumping Water-Level Decline in Upper Bedrock Aquifer(s) - Area 1 Non-Pumping Water-Level Decline in Surficial Deposits - Area 1
D01 D02 D03 E E01 E02	 Hydrographs Precipitation vs Water Levels in AENV Obs WW Camrose Reg Landfill Water-Level Measurements in AENV Obs WW Ferintosh Reg Landfill 5) Specific Areas a) Area 1 - North Slope of Battle River Field-Verified Water Well Survey - Area 1 Non-Pumping Water-Level Decline in Upper Bedrock Aquifer(s) - Area 1 Non-Pumping Water-Level Decline in Surficial Deposits - Area 1 SW-NE Cross-Section - Area 1
D01 D02 D03 E E01 E02 E03 E04	 Hydrographs Precipitation vs Water Levels in AENV Obs WW Camrose Reg Landfill Water-Level Measurements in AENV Obs WW Ferintosh Reg Landfill 5) Specific Areas a) Area 1 - North Slope of Battle River Field-Verified Water Well Survey - Area 1 Non-Pumping Water-Level Decline in Upper Bedrock Aquifer(s) - Area 1 Non-Pumping Water-Level Decline in Surficial Deposits - Area 1 SW-NE Cross-Section - Area 1 b) Area 2 - Locate Test Sites for Three Community Water Wells
D01 D02 D03 E E01 E02 E03	 Hydrographs Precipitation vs Water Levels in AENV Obs WW Camrose Reg Landfill Water-Level Measurements in AENV Obs WW Ferintosh Reg Landfill 5) Specific Areas a) Area 1 - North Slope of Battle River Field-Verified Water Well Survey - Area 1 Non-Pumping Water-Level Decline in Upper Bedrock Aquifer(s) - Area 1 Non-Pumping Water-Level Decline in Surficial Deposits - Area 1 SW-NE Cross-Section - Area 1 b) Area 2 - Locate Test Sites for Three Community Water Wells Areas of Groundwater Potential - Area 2
D01 D02 D03 E E01 E02 E03 E04 E05	 Hydrographs Precipitation vs Water Levels in AENV Obs WW Camrose Reg Landfill Water-Level Measurements in AENV Obs WW Ferintosh Reg Landfill 5) Specific Areas a) Area 1 - North Slope of Battle River Field-Verified Water Well Survey - Area 1 Non-Pumping Water-Level Decline in Upper Bedrock Aquifer(s) - Area 1 Non-Pumping Water-Level Decline in Surficial Deposits - Area 1 SW-NE Cross-Section - Area 1 b) Area 2 - Locate Test Sites for Three Community Water Wells Areas of Groundwater Potential - Area 2 c) Area 3 - Three Areas for Groundwater-Based Industrial Development
D01 D02 D03 E E01 E02 E03 E04	 Hydrographs Precipitation vs Water Levels in AENV Obs WW Camrose Reg Landfill Water-Level Measurements in AENV Obs WW Ferintosh Reg Landfill 5) Specific Areas a) Area 1 - North Slope of Battle River Field-Verified Water Well Survey - Area 1 Non-Pumping Water-Level Decline in Upper Bedrock Aquifer(s) - Area 1 Non-Pumping Water-Level Decline in Surficial Deposits - Area 1 SW-NE Cross-Section - Area 1 b) Area 2 - Locate Test Sites for Three Community Water Wells Areas of Groundwater Potential - Area 2 c) Area 3 - Three Areas for Groundwater-Based Industrial Development Areas of Groundwater Potential - Area 3
D01 D02 D03 E E01 E02 E03 E04 E05	 Hydrographs Precipitation vs Water Levels in AENV Obs WW Camrose Reg Landfill Water-Level Measurements in AENV Obs WW Ferintosh Reg Landfill 5) Specific Areas a) Area 1 - North Slope of Battle River Field-Verified Water Well Survey - Area 1 Non-Pumping Water-Level Decline in Upper Bedrock Aquifer(s) - Area 1 Non-Pumping Water-Level Decline in Surficial Deposits - Area 1 SW-NE Cross-Section - Area 1 b) Area 2 - Locate Test Sites for Three Community Water Wells Areas of Groundwater Potential - Area 2 c) Area 3 - Three Areas for Groundwater-Based Industrial Development
D01 D02 D03 E E01 E02 E03 E04 E05 E06	 Hydrographs Precipitation vs Water Levels in AENV Obs WW Camrose Reg Landfill Water-Level Measurements in AENV Obs WW Ferintosh Reg Landfill 5) Specific Areas a) Area 1 - North Slope of Battle River Field-Verified Water Well Survey - Area 1 Non-Pumping Water-Level Decline in Upper Bedrock Aquifer(s) - Area 1 Non-Pumping Water-Level Decline in Surficial Deposits - Area 1 SW-NE Cross-Section - Area 1 b) Area 2 - Locate Test Sites for Three Community Water Wells Areas of Groundwater Potential - Area 2 c) Area 3 - Three Areas for Groundwater-Based Industrial Development Areas of Groundwater Potential - Area 3 d) Area 4 - Village of Ferintosh Village of Ferintosh Water Wells
D01 D02 D03 E E01 E02 E03 E04 E05 E06 E07	 Hydrographs Precipitation vs Water Levels in AENV Obs WW Camrose Reg Landfill Water-Level Measurements in AENV Obs WW Ferintosh Reg Landfill 5) Specific Areas a) Area 1 - North Slope of Battle River Field-Verified Water Well Survey - Area 1 Non-Pumping Water-Level Decline in Upper Bedrock Aquifer(s) - Area 1 Non-Pumping Water-Level Decline in Surficial Deposits - Area 1 SW-NE Cross-Section - Area 1 b) Area 2 - Locate Test Sites for Three Community Water Wells Areas of Groundwater Potential - Area 2 c) Area 3 - Three Areas for Groundwater-Based Industrial Development Areas of Groundwater Potential - Area 3 d) Area 4 - Village of Ferintosh
D01 D02 D03 E E01 E02 E03 E04 E05 E06 E07 E08	 Hydrographs Precipitation vs Water Levels in AENV Obs WW Camrose Reg Landfill Water-Level Measurements in AENV Obs WW Ferintosh Reg Landfill 5) Specific Areas a) Area 1 - North Slope of Battle River Field-Verified Water Well Survey - Area 1 Non-Pumping Water-Level Decline in Upper Bedrock Aquifer(s) - Area 1 Non-Pumping Water-Level Decline in Surficial Deposits - Area 1 SW-NE Cross-Section - Area 1 b) Area 2 - Locate Test Sites for Three Community Water Wells Areas of Groundwater Potential - Area 2 c) Area 3 - Three Areas for Groundwater-Based Industrial Development Areas of Groundwater Potential - Area 3 d) Area 4 - Village of Ferintosh Village of Ferintosh Water Wells Village of Ferintosh 2002 - 2004 Monthly Groundwater Production
D01 D02 D03 E E01 E02 E03 E04 E05 E06 E07 E08 E09	 Hydrographs Precipitation vs Water Levels in AENV Obs WW Camrose Reg Landfill Water-Level Measurements in AENV Obs WW Ferintosh Reg Landfill 5) Specific Areas a) Area 1 - North Slope of Battle River Field-Verified Water Well Survey - Area 1 Non-Pumping Water-Level Decline in Upper Bedrock Aquifer(s) - Area 1 Non-Pumping Water-Level Decline in Surficial Deposits - Area 1 SW-NE Cross-Section - Area 1 b) Area 2 - Locate Test Sites for Three Community Water Wells Areas of Groundwater Potential - Area 2 c) Area 3 - Three Areas for Groundwater-Based Industrial Development Areas of Groundwater Potential - Area 3 d) Area 4 - Village of Ferintosh Village of Ferintosh Water Wells Village of Ferintosh Water Wells Village of Ferintosh Water-Level Measurements

ydrogeological Consultants Itd.

COUNTY OF CAMROSE NO. 22 Appendix C

General Water Well Information

Domestic Water Well Testing	2
Purpose and Requirements	2
Procedure	3
Site Diagrams	3
Surface Details	3
Groundwater Discharge Point	
Water-Level Measurements	3
Discharge Measurements	3
Water Samples	3
Water Act - Water (Ministerial) Regulation	4
Chemical Analysis of Farm Water Supplies	5
Additional Information	9

Domestic Water Well Testing

Purpose and Requirements

The purpose of the testing of domestic water wells is to obtain background data related to:

- 1) the non-pumping water level for the aquifer Has there been any lowering of the level since the last measurement?
- 2) the specific capacity of the water well, which indicates the type of contact the water well has with the aquifer;
- 3) the transmissivity of the aquifer and hence an estimate of the projected long-term yield for the water well;
- 4) the chemical, bacteriological and physical quality of the groundwater from the water well.

The testing procedure involves conducting an aquifer test and collecting of groundwater samples for analysis by an accredited laboratory. The date and time of the testing are to be recorded on all data collection sheets. A sketch showing the location of the water well relative to surrounding features is required. The sketch should answer the question, "If this water well is tested in the future, how will the person doing the testing know this is the water well I tested?"

The water well should be taken out of service as long as possible before the start of the aquifer test, preferably not less than 30 minutes before the start of pumping. The non-pumping water level is to be measured 30, 10, and 5 minutes before the start of pumping and immediately before the start of pumping which is to be designated as time 0 for the test. All water levels must be from the same designated reference, usually the top of the casing. Water levels are to be measured during the pumping interval and during the recovery interval after the pump has been turned off; all water measurements are to be with an accuracy of ± 0.01 metres.

During the pumping and recovery intervals, the water level is to be measured at the appropriate times. An example of the time schedule for a four-hour test is as follows, measured in minutes after the pump is turned on and again after the pump is turned off:

1,2,3,4,6,8,10,13,16,20,25,32,40,50,64,80,100,120.

For a four-hour test, the reading after 120 minutes of pumping will be the same as the 0 minutes of recovery. Under no circumstance will the recovery interval be less than the pumping interval.

Flow rate during the aquifer test should be measured and recorded with the maximum accuracy possible. Ideally, a water meter with an accuracy of better than \pm 1% displaying instantaneous and total flow should be used. If a water meter is not available, then the time required to completely fill a container of known volume should be recorded, noting the time to the nearest 0.5 seconds or better. Flow rate should be determined and recorded often to ensure a constant pumping rate.

Groundwater samples should be collected as soon as possible after the start of pumping and within 10 minutes of the end of pumping. Initially only the groundwater samples collected near the end of the pumping interval need to be submitted to the accredited laboratory for analysis. All samples must be properly stored for transportation to the laboratory and, in the case of the bacteriological analysis, there is a maximum time allowed between the time the sample is collected and the time the sample is delivered to the laboratory. The first samples collected are only analyzed if there is a problem or a concern with the first samples submitted to the laboratory.

Procedure

Site Diagrams

These diagrams are a map showing the distance to nearby significant features. This would include things like a corner of a building (house, barn, garage etc.) or the distance to the half-mile or mile fence. The description should allow anyone not familiar with the site to be able to unequivocally identify the water well that was tested. In lieu of a map, UTM coordinates accurate to within five metres would be acceptable. If a hand-held GPS is used, the post-processing correction details must be provided.

Surface Details

The type of surface completion must be noted. This will include such things as a pitless adapter, well pit, pump house, in basement, etc. Also, the reference point used for measuring water levels needs to be noted. This would include top of casing (TOC) XX metres above ground level; well pit lid, XX metres above TOC; TOC in well pit XX metres below ground level.

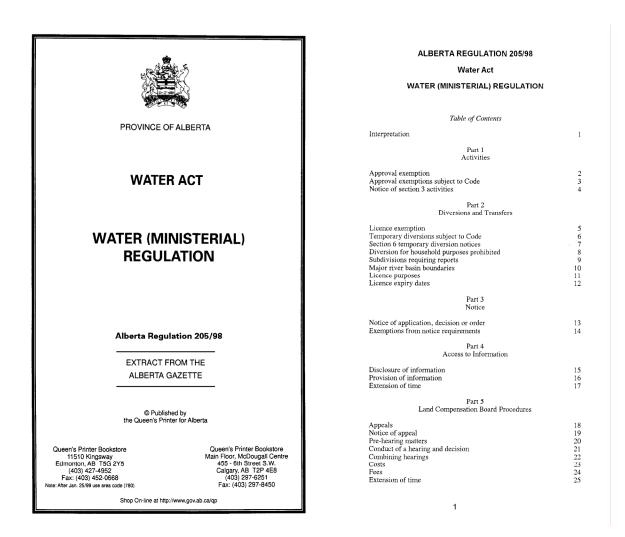
Groundwater Discharge Point

Where was the flow of groundwater discharge regulated? For example was the discharge through a hydrant downstream from the pressure tank; discharged directly to ground either by connecting directly above the well seal or by pulling the pump up out of the pitless adapter; from a tap on the house downstream from the pressure tank? Also note must be made if any action was taken to ensure the pump would operate continuously during the pumping interval and whether the groundwater was passing through any water-treatment equipment before the discharge point.

Water-Level Measurements

How were the water-level measurements obtained? If obtained using a contact gauge, what type of cable was on the tape, graduated tape or a tape with tags? If a tape with tags, when was the last time the tags were calibrated? If a graduated tape, what is the serial number of the tape and is the tape shorter than its original length (i.e. is any tape missing)?

If water levels are obtained using a transducer and data logger, the serial numbers of both transducer and data logger are needed and a copy of the calibration sheet. The additional information required is the depth the transducer was set and the length of time between when the transducer was installed and when the calibration water level was measured, plus the length of time between the installation of the transducer and the start of the aquifer test. All water levels must be measured at least to the nearest 0.01 metres.


Discharge Measurements

Type of water meter used. This could include such things as a turbine or positive displacement meter. How were the readings obtained from the meter? Were the readings visually noted and recorded or were they recorded using a data logger?

Water Samples

A water sample must be collected between the 4- and 6-minute water-level measurements, whenever there is an observed physical change in the groundwater being pumped, and 10 minutes before the end of the planned pumping interval. Additional water samples must be collected if it is expected that pumping will be terminated before the planned pumping interval.

Water Act - Water (Ministerial) Regulation

Chemical Analysis of Farm Water Supplies

Adapted from Agdex 716 (D04) Published April 1991

A routine chemical analysis tests the water for 15 chemical parameters. It will reveal the hardness and iron concentration as well as the presence of other chemicals such as chlorides, sulphates, nitrates and nitrites. Chemicals, other than those listed below, can be tested but arrangements should be made with the lab before the sample is submitted. These special requests' must be clearly specified on the request form. Your farm water supply should be analyzed whenever a new water source is constructed, or when a change in water quality is noticed.

Your local health unit can provide you with the necessary water sample containers. Water samples specifically for human consumption must be submitted to the health unit.

The water sample you take should be representative. Choose an outlet as close to the source as possible. For most domestic samples, allow the water to run through the faucet for about five minutes and then fill the sample container.

Once you have obtained a good water sample, take it to your local health unit for forwarding to the appropriate laboratory. After the laboratory analysis is completed, the health inspector or technologist will receive a copy of the analysis and will be able to help you interpret the results.

Water Quality Criteria

It is not essential for private supplies to meet these guidelines. People have different reactions and tolerances to different minerals. If any chemical in your water exceeds drinking water limits consult you family doctor or local health unit.

All levels listed below (except pH) are listed in parts per million (ppm). Many labs report results in milligrams/Litre (mg/L), which is equivalent to ppm.

Sodium

Sodium is not considered a toxic metal, and 5,000 to 10,000 milligrams per day are consumed by normal adults without adverse effects. The average intake of sodium from water is only a small fraction of that consumed in a normal diet.

Persons suffering from certain medical conditions such as hypertension may require a sodium restricted diet, in which case the intake of sodium from drinking water could become significant. Sodium levels as low as 20 ppm are sometimes a concern to them. A maximum level of 300 (200*) ppm sodium has traditionally been used as a guideline but the "Guidelines for Canadian Drinking Water Quality" list no maximum acceptable concentration.

Sodium is a significant factor in assessing water for irrigation and plant watering. High sodium levels affect soil structure and a plant's ability to take up water.

Potassium

Potassium is usually only found in quantities of a few ppm in water. There is no recommended limit for potassium but levels over 2,000 ppm may be harmful to human nervous systems. Alberta water supplies rarely contain more than 20 ppm.

Calcium

Calcium is one cause of "hardness" in water. Calcium is not a hazard to health but is undesirable because it may be detrimental for domestic uses such as washing, bathing and laundering. It also tends to cause encrustations in kettles, coffee makers and water heaters. 200 ppm is often considered an acceptable limit.

Magnesium

Magnesium is another constituent causing "hardness" in water. A suggested limit of 150 ppm is used because of taste considerations.

Iron

Iron levels as low as 0.2 to 0.3 ppm will usually cause the staining of laundry and plumbing fixtures. The presence of iron bacteria in water supplies will often cause these symptoms at even lower levels. Iron gives water a metallic taste that may be objectionable to some persons at one to two ppm. Most water contains less that five ppm iron but occasionally levels over 30 ppm are found. Iron and iron bacteria are not considered a health concern.

Sulphate (SO4)

Sulphate concentrations over 500 ppm can be laxative to some humans and livestock. Sulphate levels over 500 ppm may be a concern for livestock on marginal intakes of certain trace minerals. Very high levels of sulphates have been associated with some brain disorders in cattle and pigs.

Chloride

Due to taste considerations the suggested maximum level for chloride is 250 ppm. Most water in Alberta contains less than 20 ppm chloride, although chloride in the 2,000 ppm range can be found.

NO2 Nitrogen (Nitrite)

Due to its toxicity, the maximum acceptable concentration of nitrite in drinking water is one ppm. Nitrite is usually an indicator of very direct contamination by sewage or manure because nitrites are unstable and quickly become nitrates.

The concentration in livestock water should not exceed 10 ppm.

NO3 Nitrogen (Nitrate)

Nitrates are also an indicator of contamination by human or livestock wastes, excessive fertilization or seepage from dump sites. The maximum acceptable concentration in drinking water is 10 ppm. The figure is based on the potential for the nitrate poisoning of infants. Adults can tolerate higher levels but high nitrate levels may cause irritation of the stomach and bladder. The suggested maximum for livestock use is 1,000 ppm.

Fluoride

Fluorides occur naturally in most well waters and are desirable since they help prevent dental cavities. Between one and 1.5 ppm is desirable. As fluoride levels increase above this amount there is an increase in the tendency to cause tooth mottling.

Fluoride levels less than four ppm are not considered a problem for livestock.

TDS Inorganic (Total Dissolved Solids)

This is a measure of the inorganic minerals dissolved in the water. As a general rule less than 1,000 (500*) ppm TDS is considered satisfactory. Levels higher than this are not necessarily a problem; it depends on the specific minerals present.

The suitability for livestock deteriorates as TDS exceeds the 2,000 to 3,000 ppm range.

Conductivity

Conductivity is measured in micro Siemens per centimetre. It can be used to estimate the total dissolved solids in the water. Multiplying the conductivity by 0.65 will give a good approximation of the total dissolved solids. Conductivity tests are often used to assess water suitability for irrigation.

рΗ

pH is a measure of how acidic or basic the water is. The pH scale goes from zero (acidic) to 14 (basic) with seven being neutral. The generally accepted range for pH is 6.5 to 8.5 with an upper limit of 9.5.

Hardness

The harder the water is the greater its ability to neutralize soap suds. Hardness is caused primarily by calcium and magnesium, but is expressed as ppm equivalent of calcium carbonate. Hard water causes soap curd which makes bathroom fixtures difficult to keep clean and causes greying of laundry.

Hard water will also tend to form scale in hot water tanks, kettles, piping systems, etc.

Type of Water	Amount of Hardness	
	ррт	grains per gallon
Soft	0- 50	0-3
Moderately Soft	50 - 100	3-6
Moderately Hard	100 - 200	6-12
Hard	200 - 400	12- 23
Very Hard	400 - 600	23 - 35
Extremely Hard	Over 600	Over 35

Alkalinity

Alkalinity is not a specific substance but rather a combined effect of several substances. It is a measure of the resistance of a water to a change in pH. The alkalinity of most Alberta waters is in the range of 100 - 500 ppm, which is considered acceptable. Water with higher levels is often used. Alkalinity is a factor in corrosion or scale deposition and may affect some livestock when over 1,000 ppm.

Water Treatment

Water treatment equipment can often improve water quality significantly. Each type of water treatment equipment has its limitations and thus should be selected carefully. For more information on water treatment please refer to the Agdex 71 6 D series of fact sheets.

Helpful Conversions

- 1 ppm (part per million) = 1 mg/L (milligram per litre)
- 1 gpg (grain per gallon) = 17.1 ppm (parts per million)

References

Guidelines for Canadian Drinking Water Quality (1987) Health and Welfare Canada

County of Camrose No. 22, Part of the North Saskatchewan River Basin Regional Groundwater Assessment, Tp 041 to 050, R 16 to 22, W4M

*Federal-Provincial Subcommittee on Drinking Water of the Federal-Provincial-Territorial Committee on Environment and Occupational Health. March 2001. Summary of Guidelines for Canadian Drinking Water Quality.

Additional Information

VIDEOS

Will the Well Go Dry Tomorrow? (Mow-Tech Ltd.: 1-800 GEO WELL) Water Wells that Last (PFRA – Edmonton Office: 780-495-3307) Ground Water and the Rural Community (Ontario Ground Water Association)

BOOKLET

Water Wells that Last (PFRA – Edmonton Office: 780-495-3307); http://www.agric.gov.ab.ca/water/wells/index.html Quality Farm Dugouts - <u>http://www.agric.gov.ab.ca/esb/dugout.html</u>

ALBERTA ENVIRONMENT

WATER - http://www3.gov.ab.ca/env/water.cfm

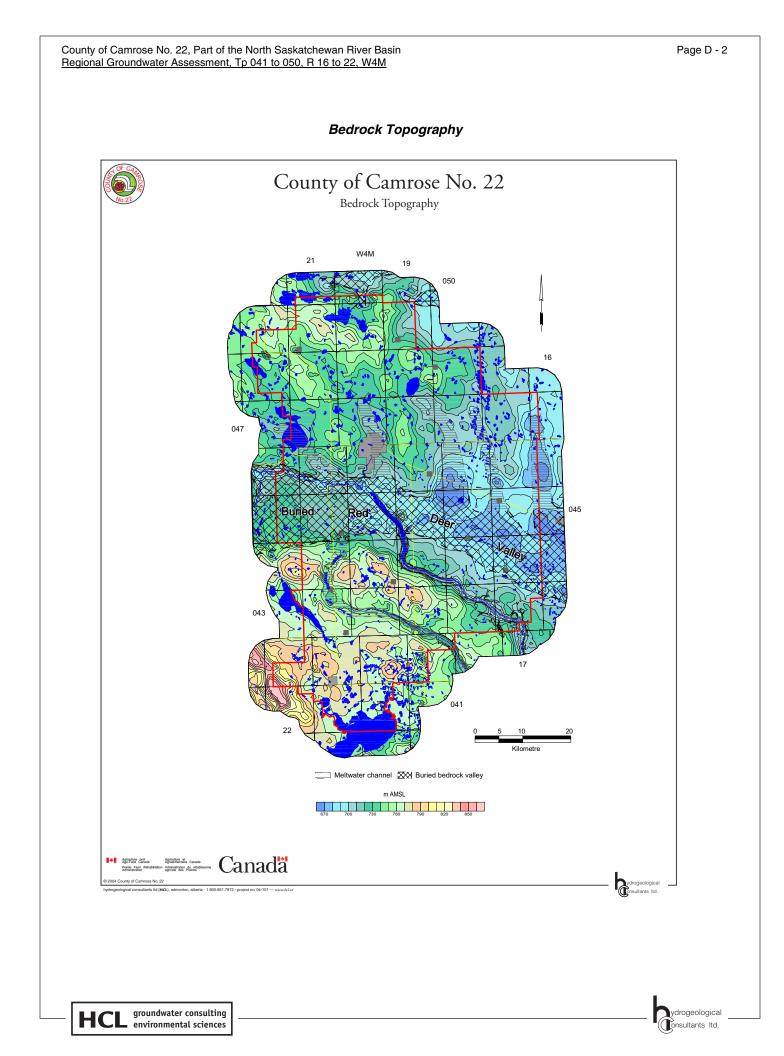
GROUNDWATER INFORMATION SYSTEM - http://www.telusgeomatics.com/tgpub/ag_water/

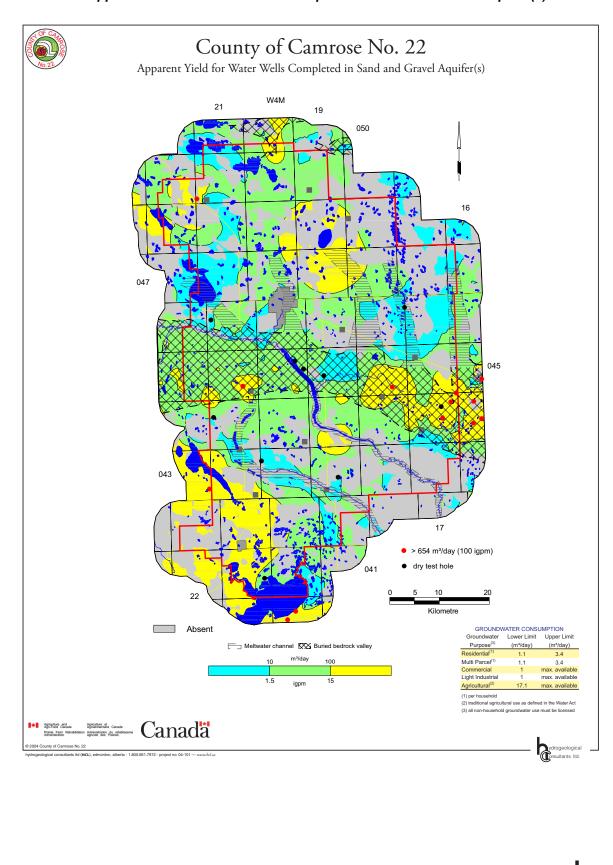
- WATER WELL INSPECTORS Jennifer McPherson (Edmonton: 780-427-6429)
- WATER WELL LICENSING Alan Hingston (Edmonton: 780-427-6429)
- GEOPHYSICAL INSPECTION SERVICE Edmonton: 780-427-3932
- COMPLAINT INVESTIGATIONS Jerry Riddell (Edmonton: 780-422-4851)
- UNIVERSITY OF ALBERTA Department of Earth and Atmospheric Sciences Hydrogeology Carl Mendoza (Edmonton: 780-492-2664)

UNIVERSITY OF CALGARY – Department of Geology and Geophysics - Hydrogeology Larry Bentley (Calgary: 403-220-4512)

FARMERS ADVOCATE Dean Lien (Edmonton: 780-427-2433) PRAIRIE FARM REHABILITATION ADMINISTRATION (PFRA) BRANCH OF AGRICULTURE AND AGRI-FOOD CANADA (AAFC)

Glen Brandt (Red Deer: 403-340-4248) - <u>brandtg@agr.gc.ca</u> Terry Dash (Calgary: 403-292-5719) - <u>dasht@agr.gc.ca</u>

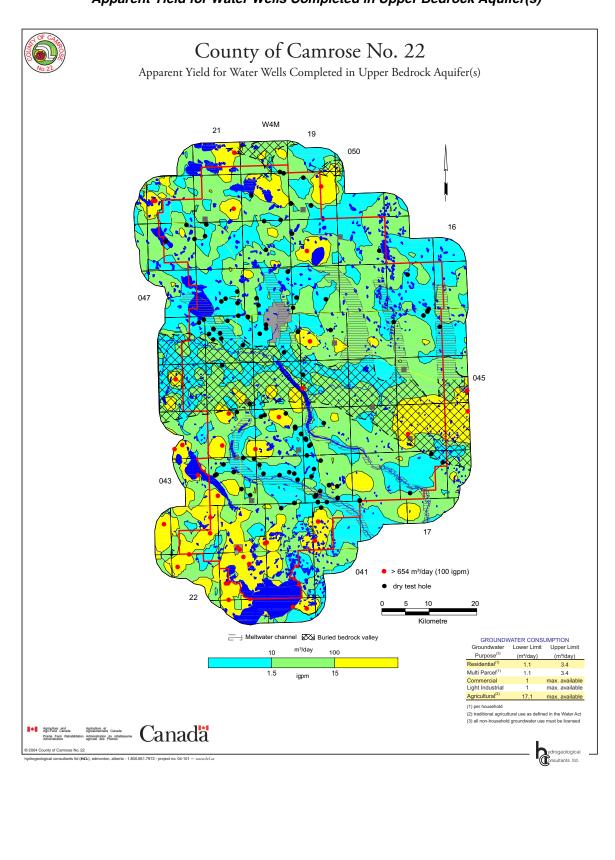

WILDROSE COUNTRY GROUND WATER MONITORING ASSOCIATION Dave Andrews (Irricana: 403-935-4478)

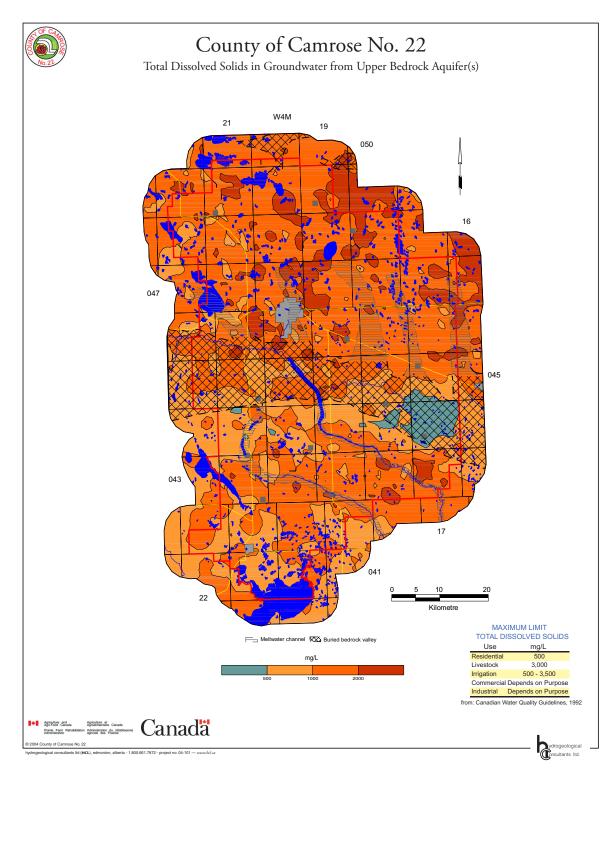

LOCAL HEALTH DEPARTMENTS

COUNTY OF CAMROSE NO. 22 Appendix D

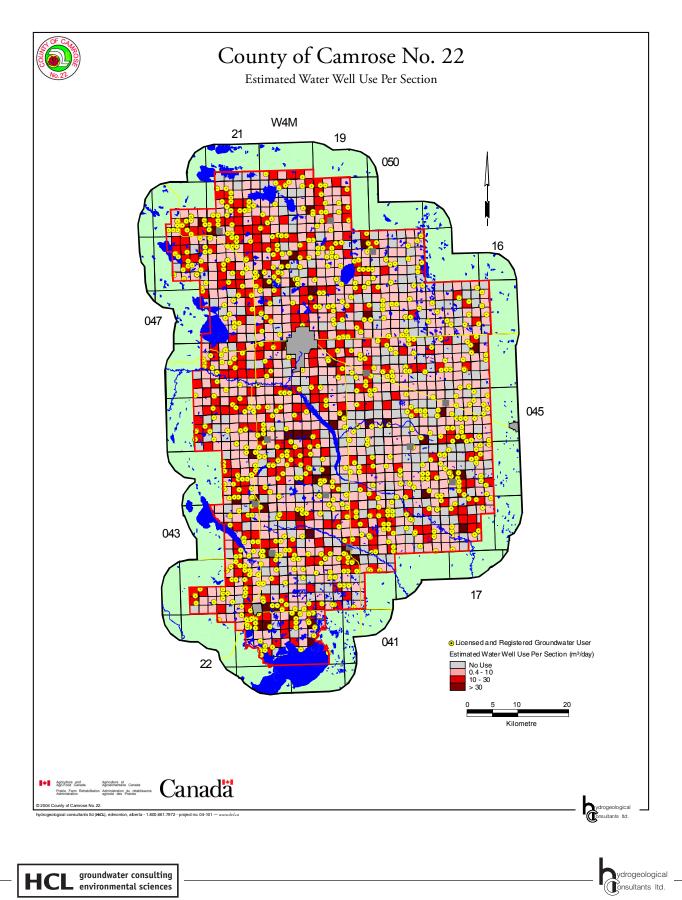
Maps and Figures Included as Large Plots

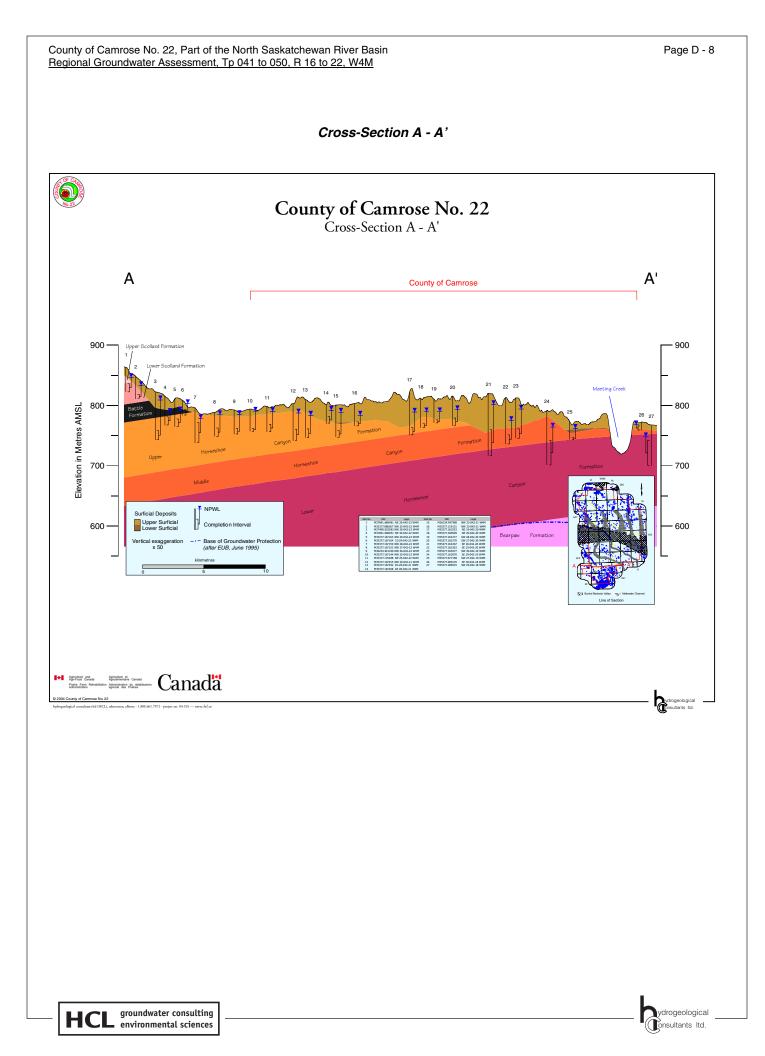
Bedrock Topography	2
Apparent Yield for Water Wells Completed in Sand and Gravel Aquifer(s)	3
Total Dissolved Solids in Groundwater from Surficial Deposits	4
Apparent Yield for Water Wells Completed in Upper Bedrock Aquifer(s)	5
Total Dissolved Solids in Groundwater from Upper Bedrock Aquifer(s)	6
Estimated Water Well Use Per Section	7
Cross-Section A - A'	8
Cross-Section B - B'	9
Cross-Section C - C'	10
Cross-Section D - D'	11
Cross-Section E - E'	
Cross-Section F - F'	13
Cross-Section G - G'	14
Cross-Section H - H'	15

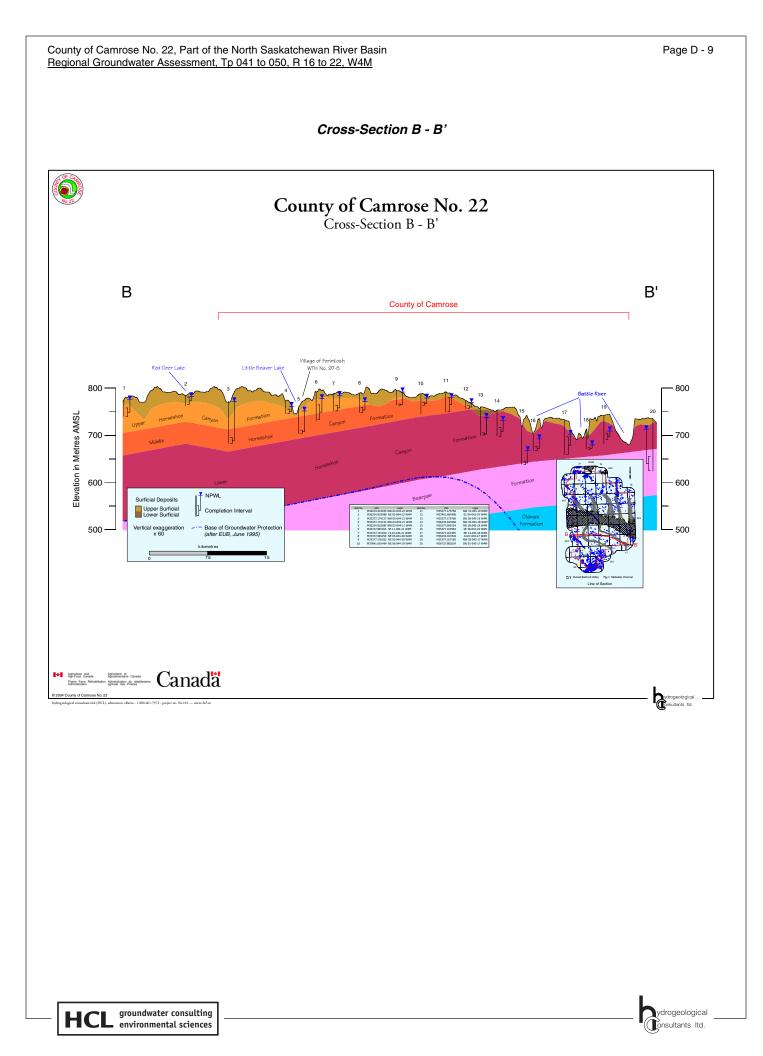


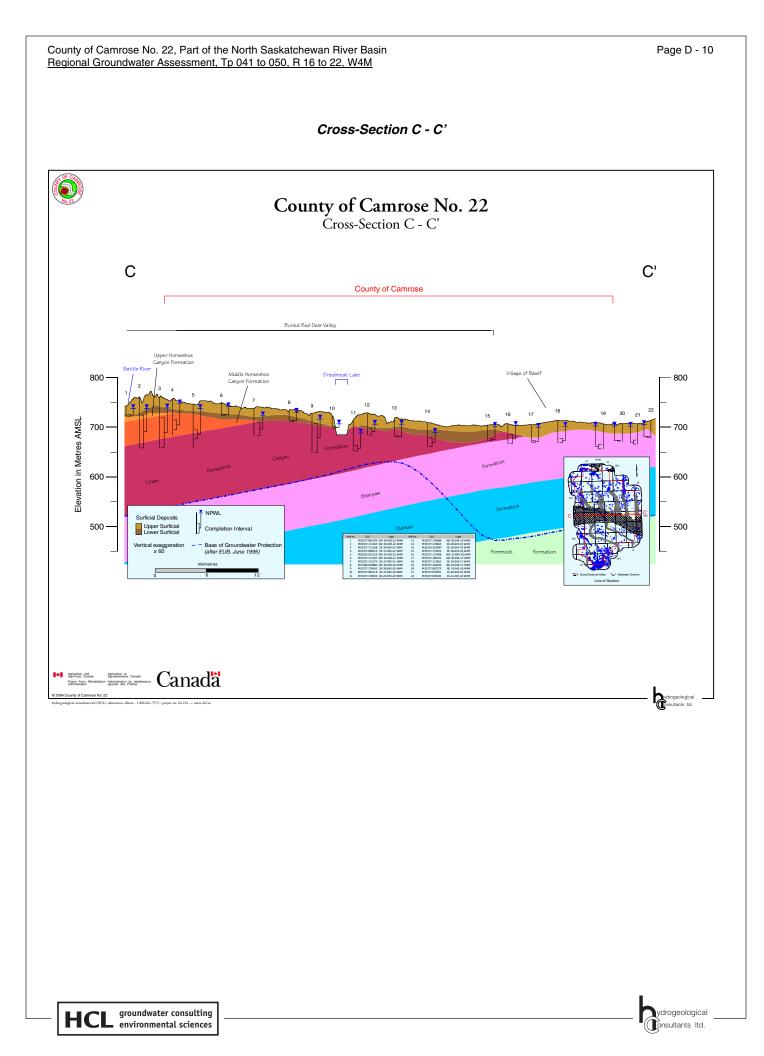

Apparent Yield for Water Wells Completed in Sand and Gravel Aquifer(s)

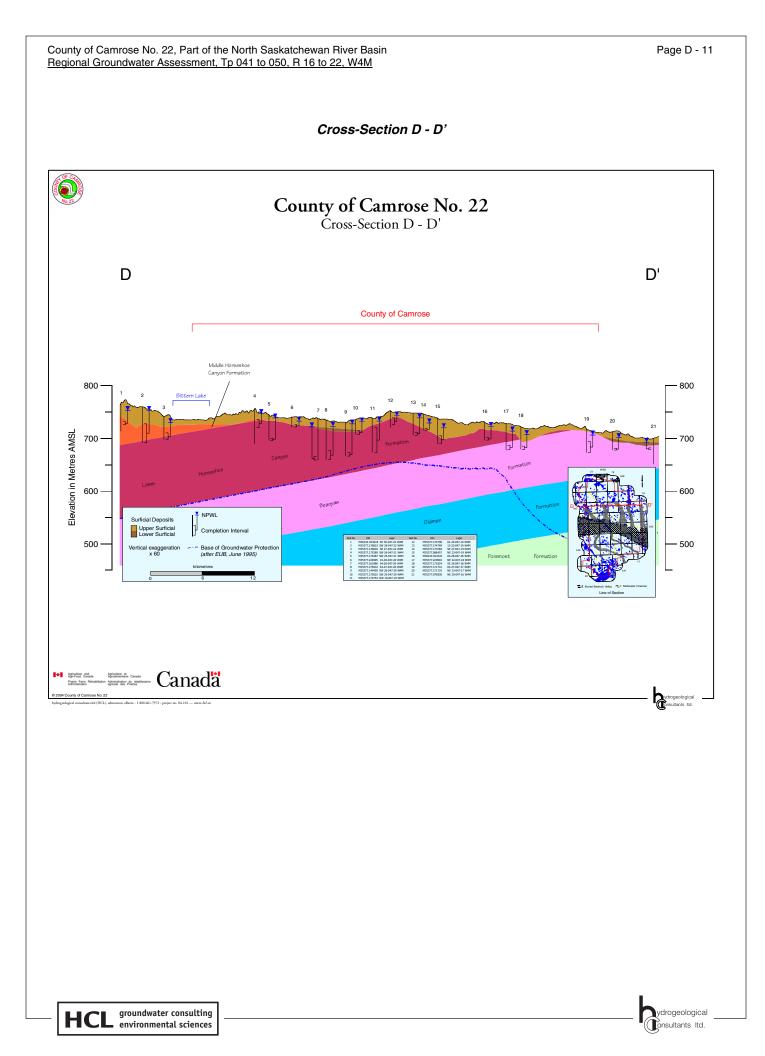
Total Dissolved Solids in Groundwater from Surficial Deposits

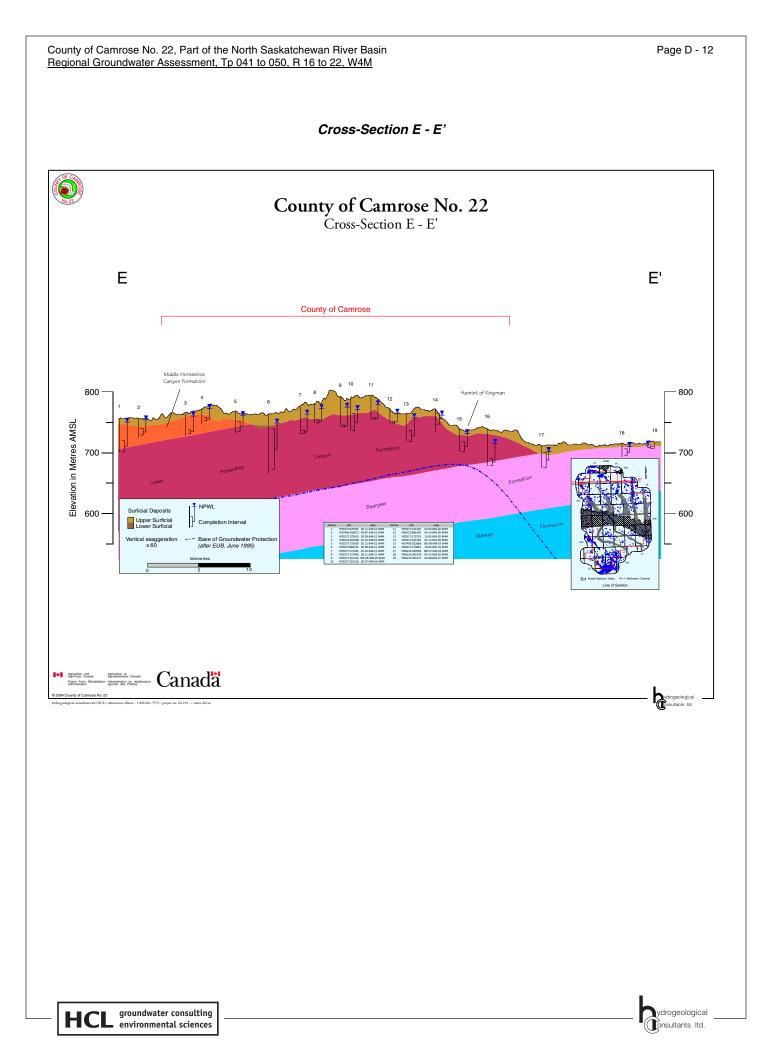


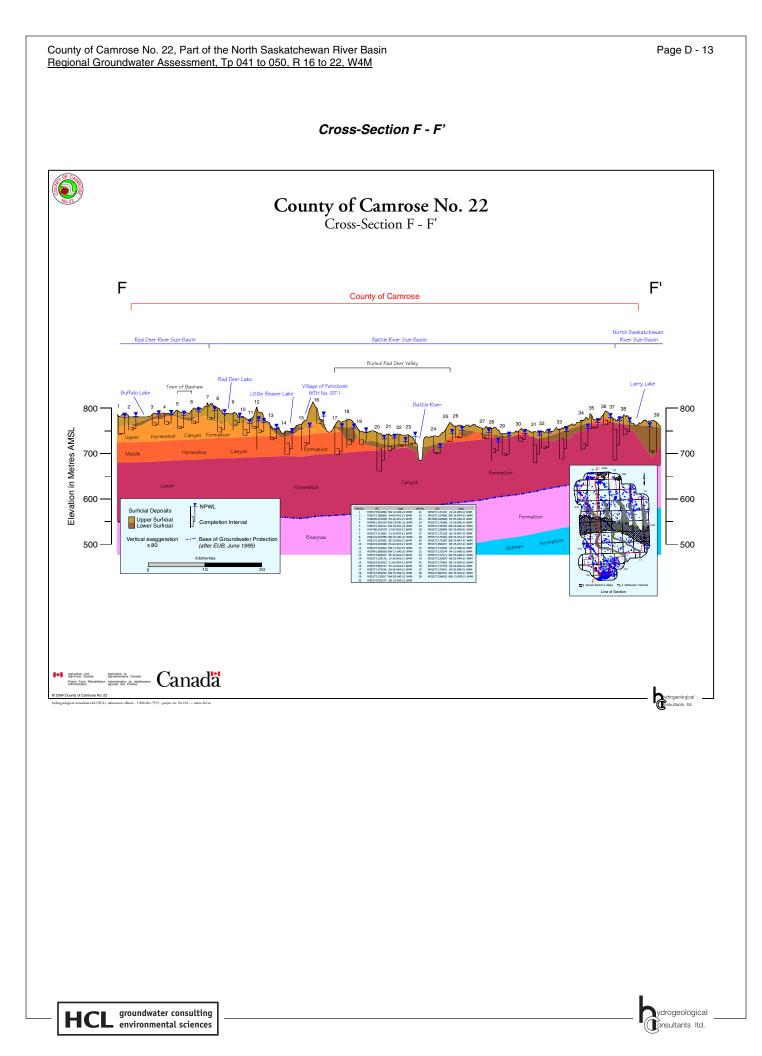

Apparent Yield for Water Wells Completed in Upper Bedrock Aquifer(s)

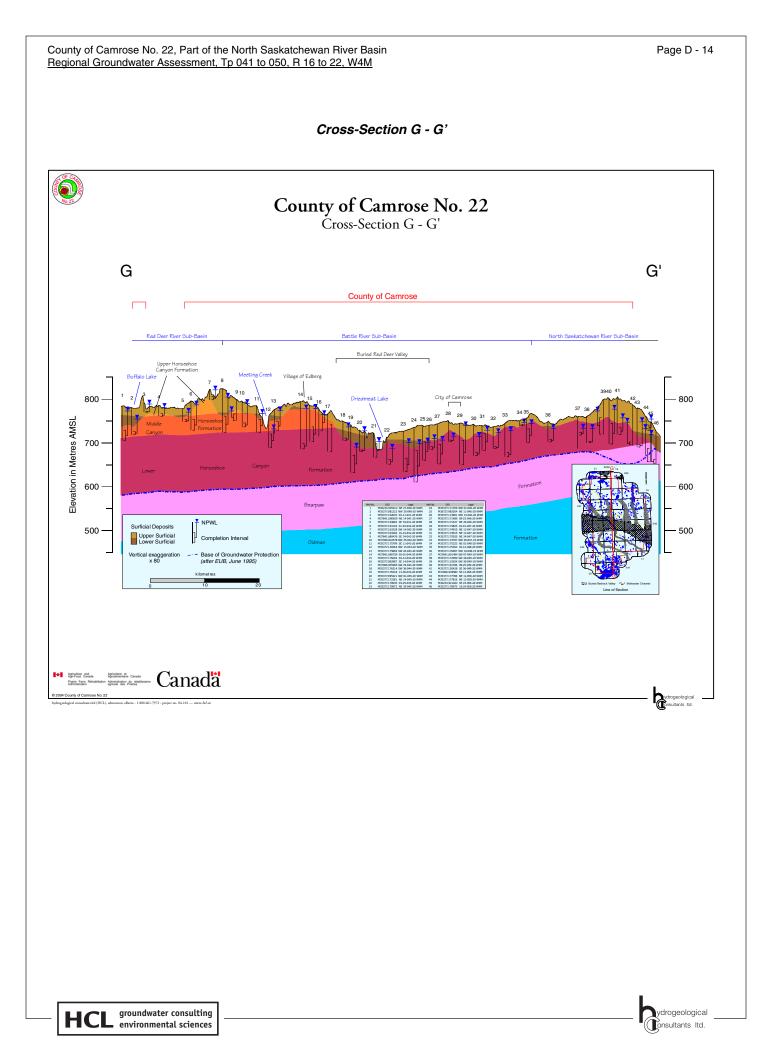


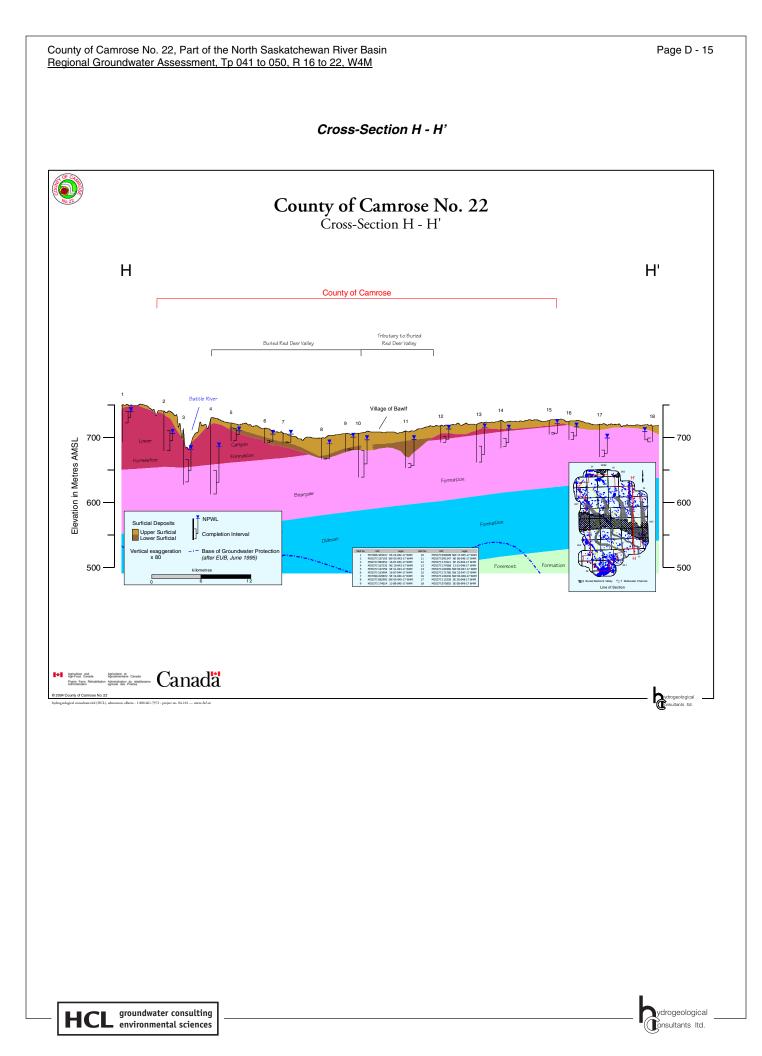

Total Dissolved Solids in Groundwater from Upper Bedrock Aquifer(s)



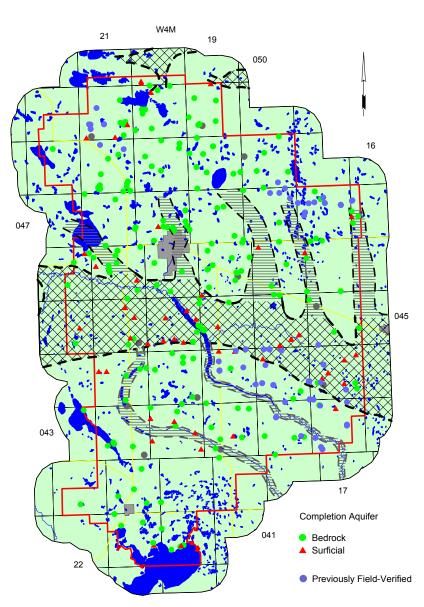








COUNTY OF CAMROSE NO. 22


Appendix E

Water Wells That Have been Field-Verified and Water Wells That Are Recommended for Field-Verification

including

County-Operated Water Wells

Water Wells That Have Been Field-Verified and Water Wells That Are Recommended For Field-Verification (details on following pages)

Heltwater channel 🖾 Buried bedrock valley

County of Camrose No. 22, Part of the North Saskatchewan River Basin Regional Groundwater Assessment, Tp 041 to 050, R 16 to 22, W4M

WATER WELLS THAT HAVE BEEN FIELD-VERIFIED

		Aquifer	Date Water	Completed	l Depth	NP	WL	Date	
Owner	Location	Name	Well Drilled	Metres	Feet	Metres	Feet	Field Verified	UID
Acehoida, Kon	NE 03-006-14 W4M	Milk River	31-Mar-89	249.9	820.0	12.2	40.0	10-Jun-99	M35377.118436
Aden School Divison	··-16-001-10 W4M	Milk River	09-May-40	115.8	380.0	18.3	60.0	13-Aug-01	M35377.094985
Alberta Environment	12-26-006-14 W4M	Milk River	18-Jan-85	213.4	700.0	2.3	7.5	24-Jun-99	M35377.118490
Alberta Environment	16-17-006-11 W4M	Milk River		216.4	710.0	57.9	190.0	03-Dec-00	M35377.127957
Als Farms Ltd.	SE 08-007-11 W4M	Milk River	25-Jan-90	234.7	770.0	24.4	80.0	03-Jun-99	M35377.083451
Anderson, Roy	SW 30-007-06 W4M	Milk River						07-May-01	M38022.504596
Ashley	NE 09-005-09 W4M	Milk River	01 1 50	213.4	700.0		0.4	30-Jul-99	M35377.119097
Ayers, Gordon L.	SE 26-003-07 W4M	Milk River	01-Jan-53	182.9	600.0	0.0	0.1	17-May-01	M35377.128418
Bailey, Carson, H.	02-06-005-13 W4M	Milk River	01-Jan-43	175.9	577.0	1.5	5.0	02-Jun-99	M35377.118418
Bailie, Carson	SW 06-005-13 W4M	Milk River	27-Mar-90	179.8	590.0	2.1	7.0	02-Jun-99	M35377.082849
Bailie, Dick	SE 34-006-14 W4M	Milk River	01 1 10	243.8	800.0			21-Jun-99	M35377.118509
Bailie, Laura Baker, Claude	08-21-006-14 W4M	Milk River	01-Jan-43 09-Oct-54	216.7	711.0			21-Jun-99	M35377.118471
Ball, Adrianna	NH 06-007-11 W4M SW 03-007-15 W4M	Bedrock Milk River	09-001-04	237.7	780.0			16-Jul-99 03-Jun-99	M35377.129456 M35377.129668
Barrows, T.	SW 15-007-10 W4M	Milk River		202.7	665.0			09-Aug-99	M35377.129008
Beaver Oils Ltd.	08-24-002-11 W4M	Milk River		214.3	703.0			29-Dec-00	M35377.114348
Bechthold, A.	SE 22-007-11 W4M	Milk River	25-Nov-89	222.5	730.0	14.6	48.0	04-Aug-99	M35377.084193
Beisterfeldt, L.	SE 11-005-07 W4M	Milk River	23-1404-03	218.5	717.0	14.0	40.0	13-Jun-01	M35377.118676
Bennett, E. C.	NW 03-005-07 W4M	Milk River		204.2	670.0	-6.1	-20.0	11-Jun-01	M35377.118633
Bennett, Ed. C.	NW 03-005-07 W4M	Milk River	14-May-49	237.7	780.0	0.1	20.0	11-Jun-01	M35377.118618
Bennett, Foster	SW 03-005-07 W4M	Milk River	20-May-49	225.5	740.0			13-Jun-01	M35377.118619
Bianchi, Nick	SW 19-001-10 W4M	Milk River	26-Sep-58	170.7	560.0	57.9	190.0	23-Apr-01	M35377.094997
Biesterfeldt, Terry	SE 11-005-07 W4M	Milk River	12-Aug-50	278.3	913.0			13-Jun-01	M35377.118669
Black, Barry	NE 10-003-10 W4M	Milk River		176.8	580.0			09-Sep-99	M35377.092617
Black, Sid	15-10-003-10 W4M	Milk River	01-Jan-61	152.4	500.0			09-Sep-99	M35377.128540
Bodnaruk, Betty	NE 18-006-08 W4M	Milk River	10-Jun-88	267.0	876.0	12.8	42.0	11-May-01	M35377.119454
Borden's	SE 16-008-10 W4M	[unknown]						10-Aug-99	M38022.504471
Britner Farms	15-33-004-12 W4M	Milk River	01-Jan-60	262.1	860.0	33.5	110.0	27-May-99	M35377.128360
Brustead, J.	NE 20-008-10 W4M	Milk River	01-Jan-20	274.3	900.0			10-Aug-99	M35377.129827
Brustead, M. O.	NE 20-008-10 W4M	Milk River		237.7	780.0			10-Aug-99	M35377.129828
Bullis, Herb	SE 36-005-12 W4M	Milk River						25-May-99	M38022.504410
Burbridge Farms Ltd.	SW 17-009-12 W4M	Upper Surficial						30-May-01	M35377.135061
C. M. C. Black Butte	08-18-001-08 W4M	Bedrock	30-Apr-60	236.2	775.0	87.5	287.0	25-Jun-01	M35377.094881
Campbell, D. M.	NW 01-007-08 W4M	Milk River	01-Jan-31	225.5	740.0	-2.4	-8.0	06-Jun-01	M35377.129064
Canada Customs/ Lamont Billingsly	02-03-001-10 W4M	Milk River	01-Nov-63	175.3	575.0	105.2	345.0	16-May-01	M35377.094900
Canada Montana Gas Company	NW 08-004-06 W4M	[unknown]						25-Jun-01	M38022.504633
Canada Montana Gas Company	NE 12-004-07 W4M	[unknown]						25-Jun-01	M38022.504634
Canadian Gulf Oil Company	13-19-008-08 W4M	Milk River	25-Nov-54	238.7	783.0			23-May-01	M35377.129541
Canadian Montana Gas Company Ltd.	NE 08-003-08 W4M	Milk River	04-Jul-51	245.1	804.0	35.7	117.2	30-Sep-00	M35377.087553
Canadian Natural Gas Company	NE 29-008-11 W4M	Milk River	01-Jan-26	192.0	630.0			04-Aug-99	M35377.129910
Carlson, T.	SE 09-008-09 W4M	Bedrock	01-Jan-35	281.9	925.0	-6.1	-20.0	25-May-01	M35377.129689
Chesney, Matt & Boyd	EH 27-007-09 W4M	Milk River	27-Dec-53	281.9	925.0			21-Sep-99	M35377.129291
Chin Valley Ranch Ltd.	NW 21-006-11 W4M	Milk River	20-Dec-81	155.4	510.0	14.0	46.0	21-May-99	M35377.129225
Chin Valley Ranch Ltd.	SE 19-006-11 W4M	Milk River	07-Jul-86	227.4	746.0	74.7	245.0	21-May-99	M35377.129201
Collin, Stewart	NE 33-004-12 W4M	Milk River	07-Jan-89	222.5	730.0	73.5	241.0	27-May-99	M35377.128367
Collin, Vincent	SW 14-006-14 W4M	Milk River	01-Jan-29	228.6	750.0	15.2	50.0	23-Jun-99	M35377.118453
Collins, John	SW 14-006-14 W4M	Milk River	10 1-1 01	249.9	820.0	7.8	25.5	23-Jun-99	M35377.118455
Collins, Loren	SW 14-006-14 W4M	Milk River	12-Jul-91 18-Mar-95	231.3 207.3	759.0 680.0	16.8 0.0	55.0	23-Jun-99	M35377.124485 M35377.220004
Collins, Marvin	SE 21-006-08 W4M SH 27-007-10 W4M	Milk River	01-Jan-44	207.3	734.0	0.0	-0.1	14-Sep-99 11-Jun-01	
Conquergood, T. H. Conquerville School	NE 24-008-10 W4M	Milk River Milk River	01-Jan-44	243.8	800.0	7.6	25.0	03-Dec-00	M35377.129373 M35377.129849
· · · · · ·				243.0	800.0	7.0	20.0	30-Jun-99	M38022.504448
Conrade, Howard Cooke, J.	SW 08-005-14 W4M SE 17-007-11 W4M	Milk River Milk River	01-Jan-29	195.1	640.0	-0.6	-2.0	04-Aug-99	M35377.129497
County of Forty Mile	05-24-005-06 W4M	Milk River	01-Mar-73	335.3	1100.0	304.8	1000.0	28-May-01	M35377.128310
County of Forty Mile	NW 24-005-06 W4M	Milk River	01-iviai-73	304.8	1000.0	304.0	1000.0	28-May-01	
County of Forty Mile	NE 14-006-09 W4M	Milk River	20-Sep-84	263.6	865.0	19.8	65.0	14-Sep-99	M35377.128330 M35377.129007
County of Forty Mile	16-03-004-10 W4M	Milk River	01-Jul-67	203.0	740.0	38.1	125.0	16-Aug-01	M35377.118732
County of Forty Mile	SW 27-005-14 W4M	Milk River	07-Mar-00	243.8	800.0	50.1	125.0	25-Jun-99	M37066.938717
Courtney, Ralph	NW 23-006-09 W4M	Bedrock	11-May-50	243.8	841.0			18-Sep-99	M35377.129008
Courtney, Ralph	NE 18-006-08 W4M	Milk River	T May-50	200.0	0.1.0			11-May-01	M38022.504629
Coverdale, Charles Claude	04-21-006-11 W4M	Milk River	01-Oct-72	213.4	700.0	61.0	200.0	21-May-99	M35377.129222
Coverdale, Todd	NW 08-004-13 W4M	Milk River	14-Jan-89	170.7	560.0	01.0	200.0	12-Jul-99	M35377.118377
Cowie, Bruce	SW 28-006-10 W4M	Milk River	17-Nov-89	224.3	736.0	18.3	60.0	07-Jun-99	M35377.129123
Cowie, Jack	10-08-006-10 W4M	Milk River	01-Jan-63	266.7	875.0	64.0	210.0	22-Jul-99	M35377.129098
Cowie, W.	NE 08-006-10 W4M	Milk River	01-Jan-23	274.3	900.0	30.5	100.0	22-Jul-99	M35377.129100
Craft, F. J.	NH 20-007-07 W4M	Bedrock	01-Jan-32	243.8	800.0	-3.1	-10.0	03-May-01	M35377.129048
		Milk River		240.8	790.0	5		14-Sep-99	M35377.119513
Cunningham, Stan	SVV 27-000-06 VV4IVI								
Cunningham, Stan D'Agnone, Domenico	SW 27-006-08 W4M 16-06-007-14 W4M		11-Jul-50			6.1	20.0		
Cunningham, Stan D'Agnone, Domenico Dangerfield Farming & Ranching	16-06-007-14 W4M NE 08-001-10 W4M	Milk River Milk River	11-Jul-50 24-Oct-75	229.8 182.9	754.0 600.0	6.1 37.5	20.0 123.0	02-May-00 16-May-01	M35377.118569 M35377.094910

		Aquifer	Date Water	Completer	Depth	NP	WL	
Owner	Location	Name	Well Drilled	Metres	Feet	Metres	Feet	UID
Adamson, Ernest		Lower Horseshoe Canyon		42.7	140.0	9.5	31.0	M35377.174769
Adamson, Harvey	SW 30-048-19 W4M	Lower Horseshoe Canyon	24-Dec-79	36.6	120.0	6.1	20.0	M35377.176948
Affleck, Lyle	07-33-046-21 W4M	Lower Horseshoe Canyon	26-Apr-82	63.4	208.0	21.9	72.0	M35377.176477
Affleck, Lyle	SE 33-046-21 W4M	Middle Horseshoe Canyon	28-May-75	32.3	106.0	8.8	29.0	M35377.176476
Alberta Department of Highways	SW 36-046-22 W4M	Surficial	01-May-58	30.5	100.0	9.1	30.0	M35377.176714
Alberta Wheat Pool Ltd.	SE 04-045-18 W4M	Surficial	09-Nov-66	37.2	122.0	10.7	35.0	M35377.173891
Anderson, H.	04-09-049-20 W4M	Lower Horseshoe Canyon	01-Sep-83	39.0	128.0	15.2	50.0	M35377.191326
Anderson, Hazel	··-08-049-19 W4M	Lower Horseshoe Canyon	27-Jan-81	24.4	80.0	7.0	23.0	M35377.172926
Anderson, Ted	SE 34-045-21 W4M	Lower Surficial	05-Sep-78	23.5	77.0	10.4	34.0	M35377.171464
Armena Rec Association Ltd.	SW 12-048-21 W4M	Lower Horseshoe Canyon		42.7	140.0	7.3	24.0	M35377.172658
Astley, Norm	SW 08-046-20 W4M	Lower Horseshoe Canyon	07-Jun-79	67.1	220.0	37.5	123.0	M35377.171383
Badry, Cliff	NE 12-045-17 W4M	Oldman	15-May-82	107.3	352.0	3.1	10.0	M35377.174026
Balla, Bill	EH 35-043-22 W4M	Upper Horseshoe canyon	24-Aug-79	37.2	122.0	2.4	8.0	M35377.068928
Banack, Chester	NW 34-046-18 W4M	Bearpaw	31-Jul-82	36.6	120.0	3.4	11.0	M35377.174464
Banack, Wm		Lower Horseshoe Canyon	27-Sep-75	59.1	194.0	35.1	115.0	M35377.176875
Baptist, Ross		Lower Horseshoe Canyon		16.5	54.0	7.9	26.0	M35377.174547
Barker, Wayde		Lower Horseshoe Canyon		52.4	172.0	32.0	105.0	M35377.176423
Benson, C.	NE 28-043-17 W4M	Surficial	30-Jul-49	24.4	80.0	18.3	60.0	M35377.167251
Bergquist, Lawrence	SE 22-046-18 W4M	Bearpaw	10-Aug-79	36.6	120.0	11.6	38.0	M35377.174430
Berkhart, Doug	SW 12-044-17 W4M	Bearpaw	06-Mar-78	48.8	160.0	7.0	23.0	M35377.163534
Bethany Lutheran Church		Lower Horseshoe Canyon		15.9	52.0	4.0	13.0	M35377.163367
Bianowski, Fred		Lower Horseshoe Canyon		14.6	48.0	4.3	14.0	M35377.176937
Bianowski, Fred		Lower Horseshoe Canyon		7.6	25.0	3.4	11.0	M35377.176939
Biever, Roger		Lower Horseshoe Canyon		45.7	150.0	23.5	77.0	M35377.170704
Bjorge, Marvin	SW 06-046-17 W4M	Bearpaw	22-Sep-72	28.0	92.0	9.5	31.0	M35377.174291
Blum, Doug		Lower Horseshoe Canyon		48.8	160.0	30.5	100.0	M35377.176410
Boese, John		Lower Horseshoe Canyon		42.7	140.0	17.4	57.0	M35377.170589
Boese, Vemon		Middle Horseshoe Canyon		35.4	116.0	12.8	42.0	M35377.175694
Borman, Eldon	NW 04-046-18 W4M	Bearpaw	13-Mar-75	50.0	164.0	1.1	3.5	M35377.174394
Boulten, Keith	16-10-044-17 W4M	Lower Surficial	01-Jan-70	27.4	90.0	4.9	16.0	M35377.163523
Bowden, Heinz		Lower Horseshoe Canyon		24.4	80.0	7.3	24.0	M35377.175769
Bowlan, Harry		Lower Horseshoe Canyon		33.8	111.0	18.3	60.0	M35377.174877
Bowman, Ken		Lower Horseshoe Canyon		41.2	135.0	8.2	27.0	M35377.172530
Braseth, Angus		Upper Horseshoe canyon		38.1	125.0	5.2	17.0	M35377.162985
Broughton, W.		Lower Horseshoe Canyon		29.0	95.0	6.2	20.3	M35377.163461
Brown, Randy		Lower Horseshoe Canyon		31.1	102.0	16.2	53.0	M35377.174518
Brown, Richard		Lower Horseshoe Canyon	-	42.7	140.0	6.7	22.0	M35377.172745
Buban, W.		Middle Horseshoe Canyon		15.2	50.0	6.4	21.0	M35377.172743
Cail, Jim		Lower Horseshoe Canyon	ů.	30.5	100.0	12.2	40.0	M35377.172702 M35377.174870
Cail, John		Lower Horseshoe Canyon		36.6	120.0	8.8	29.0	M35377.174970
Camrose, County Of		Lower Horseshoe Canyon		25.9	85.0	4.6	15.0	M35377.163926
Canfield, J.		Lower Horseshoe Canyon		41.2	135.0	8.2	27.0	M35377.175395
Carlson, Gunner	NE 32-046-17 W4M		16-Jun-70			4.9	16.0	M35377.175395
		Bearpaw Surficial	04-Sep-75	36.6	120.0		92.0	
Carter, G.R.	SW 06-046-19 W4M			36.6	120.0	28.0		M35377.174585
Chamney, Harold And Sonda		Middle Horseshoe Canyon		54.9 42.7	180.0 140.0	7.0	23.0 60.0	M35377.162766 M35377.171451
Chant, Austin		Lower Horseshoe Canyon				18.3		
Christian, Jim	13-02-045-20 W4M	Lower Surficial	19-May-66	31.4	103.0	7.6	25.0	M35377.163990
Clennin, Doug	NE 33-045-18 W4M	Bearpaw	15-Mar-79	41.2	135.0	1.8	6.0	M35377.173971
Condes, Carl		Lower Horseshoe Canyon		54.9	180.0	9.1	30.0	M35377.170832
Cowan, Dave		Middle Horseshoe Canyon		27.4	90.0	6.1	20.0	M35377.174232
Cupido, N.		Lower Horseshoe Canyon		103.6	340.0	8.5	28.0	M35377.173642
Currie, Kevin		Lower Horseshoe Canyon		35.1	115.0	14.3	47.0	M35377.173461
Dawbin, Bill	14-07-043-20 W4M	Surficial	21-Oct-83	9.8	32.0	1.2	4.0	M35377.175795
Deljay Constr		Lower Horseshoe Canyon		33.5	110.0	15.5	51.0	M35377.176321
Department of Public Works	5vv 20-049-20 W4M	Lower Horseshoe Canyon	11-IVIAI-69	59.4	195.0	0.4	1.3	M35377.191375

		Aguifer	Date Water	Complete	d Depth	NP	WL	
Owner	Location	Name	Well Drilled	Metres	Feet	Metres	Feet	UID
Department of Public Works	SW 20-049-20 W4M	Lower Horseshoe Canyon	11-Mar-69	39.0	128.0	5.4	17.7	M35377.191376
Department of Public Works	SW 20-049-20 W4M	Lower Horseshoe Canyon	11-Mar-69	36.6	120.0	6.2	20.2	M35377.191380
Dereniuk, B.H.	NW 14-046-19 W4M	Lower Horseshoe Canyon	01-Jan-78	21.3	70.0	12.2	40.0	M35377.174616
Drowk	SW 05-050-20 W4M	Upper Surficial	05-May-76	26.8	88.0	4.0	13.0	M35377.177522
Dyer, Wilf		Lower Horseshoe Canyon		43.6	143.0	13.7	45.0	M35377.170649
Egert, Eldon		Middle Horseshoe Canyon		51.8	170.0	6.1	20.0	M35377.176186
Egert, Ron		Middle Horseshoe Canyon		31.4	103.0	3.1	10.0	M35377.176182
Erickson, Floyd E.		Lower Horseshoe Canyon		67.1	220.0	21.3	70.0	M35377.191406
Fast, Stan	15-01-043-20 W4M	Surficial	09-Dec-81	21.9	72.0	19.8	65.0	M35377.175774
Fearon, Roy		Lower Horseshoe Canyon		25.9	85.0	19.8	65.0	M35377.174539
Forne, Leroy	NW 12-048-18 W4M	Bearpaw	01-Nov-71	48.8	160.0	8.5	28.0	M35377.171569
Forsberg, Ray	NW 13-043-20 W4M	Surficial	30-Apr-65	26.2	86.0	19.2	63.0	M35377.175807
Fransen, Donald Garry	SE 34-045-21 W4M	Lower Surficial	28-Sep-77	23.2	76.0	11.0	36.0	M35377.171462
Freier, Ken		Lower Horseshoe Canyon		42.7	140.0	19.5	64.0	M35377.172909
Friesen, A.		Upper Horseshoe canyon		22.9	75.0	4.3	14.0	M35377.175912
Galenza, Carl		Lower Horseshoe Canyon		30.5	100.0	3.7	12.0	M35377.175303
Gallaher, Jim		Middle Horseshoe Canyon		27.4	90.0	3.1	10.0	M35377.175563
Geldart, Richard		Lower Horseshoe Canyon		54.9	180.0	21.3	70.0	M35377.173470
Gibson, C.G.		Lower Horseshoe Canyon		32.0	105.0	14.0	46.0	M35377.172957
Gibson, Geo		Lower Horseshoe Canyon	•	73.2	240.0	9.1	30.0	M35377.191420
Gibson, Ray		Middle Horseshoe Canyon	,	38.1	125.0	15.2	50.0	M35377.176694
Gladiotis Holdings Ltd		Middle Horseshoe Canyon	,	18.6	61.0	6.6	21.8	M35377.176513
Gould, Rick & Rita	13-16-044-17 W4M	Upper Surficial	18-Nov-77	15.2	50.0	5.5	18.0	M35377.163566
Gregorwich, Steve	NW 02-045-18 W4M	Upper Surficial	05-Aug-75	16.2	53.0	4.3	14.0	M35377.173883
Gregorwich, Steve	NW 02-045-18 W4M	Upper Surficial	14-Jun-78	18.0	59.0	4.0	13.0	M35377.173884
Groeller, John	SE 06-049-21 W4M	Lower Surficial	25-Sep-71	22.6	74.0	8.8	29.0	M35377.173342
Grundberg, Carmen Gudmunson, L.		Lower Horseshoe Canyon Bearpaw	23-Oct-79	59.4	195.0 85.0	18.3	60.0 37.0	M35377.174892
Harmider, Ron	NW 35-048-18 W4M SE 31-046-18 W4M	Upper Surficial	01-Aug-79	25.9 21.3	70.0	11.3 6.7	22.0	M35377.171894 M35377.174454
Haselwood, Louis		Lower Horseshoe Canyon	0	70.1	230.0	27.4	90.0	M35377.174434 M35377.176630
Haugen, A.K.		Lower Horseshoe Canyon		74.7	245.0	21.6	71.0	M35377.176299
Haugen, Rick		Lower Horseshoe Canyon		22.9	75.0	0.6	2.0	M35377.176867
Heie, Don		Lower Horseshoe Canyon		35.7	117.0	12.2	40.0	M35377.176951
Heise, Benno	NW 33-045-18 W4M	Bearpaw	16-Nov-79	48.8	160.0	-0.6	-2.0	M35377.173969
Hendrickson, George		Middle Horseshoe Canyon		15.2	50.0	6.4	21.0	M35377.172580
Herget, B.		Middle Horseshoe Canyon		24.4	80.0	1.8	6.0	M35377.172573
Hilgartner, Cliff		Lower Horseshoe Canyon		25.9	85.0	7.0	23.0	M35377.175127
Hills Ranching Co Ltd		Lower Horseshoe Canyon	•	79.2	260.0	39.0	128.0	M35377.171369
Hiway Service	SW 31-045-17 W4M	Bearpaw	27-Jun-55	56.4	185.0	11.0	36.0	M35377.174084
Hodgetts, Steve	SW 36-048-20 W4M	Lower Horseshoe Canyon	29-Dec-79	48.8	160.0	12.2	40.0	M35377.175485
Horte, Vernon	SW 18-049-19 W4M	Lower Horseshoe Canyon	01-Sep-83	59.7	196.0	27.4	90.0	M35377.172999
Hoyme, Cliff	13-14-046-20 W4M	Lower Horseshoe Canyon	29-Sep-79	67.1	220.0	33.5	110.0	M35377.171415
Humpage, Milt	05-08-046-19 W4M	Lower Horseshoe Canyon	09-Apr-80	36.6	120.0	19.8	65.0	M35377.174594
Huseby, Terrance	SW 19-047-16 W4M	Bearpaw	04-Sep-54	27.4	90.0	10.7	35.0	M35377.076826
Isaac, Edgar	SW 34-043-20 W4M	Middle Horseshoe Canyon	18-Nov-79	42.7	140.0	12.8	42.0	M35377.175923
Isaac, Melvin		Lower Horseshoe Canyon		48.8	160.0	10.1	33.0	M35377.095421
Jaycock, Arlen	SE 02-049-21 W4M	Lower Horseshoe Canyon	17-Jan-81	39.6	130.0	4.6	15.0	M35377.173225
Johnson, Rick		Lower Horseshoe Canyon		36.6	120.0	25.3	83.1	M35377.191345
Johnson, W.		Middle Horseshoe Canyon		41.2	135.0	3.1	10.0	M35377.162714
Johnston, Gerald	13-06-045-20 W4M	Surficial	10-May-84	35.4	116.0	6.1	20.0	M35377.164021
Kaechele, Wes		Upper Horseshoe canyon		39.6	130.0	32.9	108.0	M35377.167077
Karlstrom, Vic		Lower Horseshoe Canyon		45.7	150.0	12.2	40.0	M35377.170558
Kasa, Randall O.		Lower Horseshoe Canyon		40.5	133.0	19.8	65.0	M35377.170613
Keller, Robert	13-21-045-20 W4M	Surficial	04-Dec-78	22.9	75.0	9.1	30.0	M35377.170771
Kennedy, Brant		Lower Horseshoe Canyon		43.0	141.0	21.9	72.0	M35377.175939
Kennedy, Doug		Lower Horseshoe Canyon		19.5	64.0	8.5	28.0	M35377.167258
Klassin, Jody		Middle Horseshoe Canyon		73.2	240.0	15.9	52.0	M35377.171133
Klevgaard, Bjorn		Middle Horseshoe Canyon		13.7	45.0	3.7	12.0	M35377.175760
Klevgaard, Magnus		Middle Horseshoe Canyon		24.4	80.0 36.0	10.7 3 1	35.0	M35377.175847 M35377 163452
Kneeland, Marvin	13-12-043-18 VV4IVI	Lower Horseshoe Canyon	20-JUI-04	11.0	36.0	3.1	10.0	M35377.163452

Aquifer Name Krause, Kenneth 01-08-045-20 W4M Lower Surficial Kuger, Peter SE 01-047-19 W4M Lower Horseshoe C. Kyle, Gordon NE 33-049-19 W4M Surficial Layden, Mike 08-05-047-17 W4M Bearpaw Leibel, Frank NW 12-044-17 W4M Bearpaw Leibel, Joe 06-13-046-21 W4M Upper Surficial Litle, D. SW 30-041-20 W4M Upper Surficial Magnien, Walter NE 12-047-20 W4M Lower Horseshoe C. Martin Bros. 10-13-047-20 W4M Lower Horseshoe C. Martin, Bill SE 13-047-20 W4M Lower Horseshoe C. Megregor, Jim NW 11-047-20 W4M Lower Horseshoe C. Mcgregor, Jim NW 11-047-20 W4M Lower Horseshoe C. Megregor, Jim NW 11-047-20 W4M Lower Horseshoe C. Megregor, Jim NW 11-047-20 W4M Lower Horseshoe C. Megregor, Jim NW 11-047-20 W4M Lower Horseshoe C. Miler, Dave SW 36-044-20 W4M Lower Horseshoe C. Miler, Dave SW 36-044-20 W4M Lower Horseshoe C.	Well Drilled 29-Nov-80 anyon 30-May-82 24-May-54 20-Aug-82 anyon 01-Jan-78 20-Aug-73 04-Jun-85 anyon 11-Sep-79 10-Aug-71 17-May-76 anyon 21-Jun-79 anyon 09-Jun-76 anyon 01-Jul-73 anyon 18-Aug-78 anyon 11-Jul-73 anyon 11-Jul-73 anyon 11-Jul-73 anyon 11-Jul-73 anyon 11-Jul-73 anyon 01-Jul-73 anyon 01-Jul-73 anyon 01-Aug-85 anyon 01-Jul-73 anyon 01-Jul-73 anyon 01-Jul-73 anyon 01-Jul-73 anyon 01-Jul-73 anyon 01-Jul-73 anyon 01-Jan-63 anyon 01-Jan-63 anyon 01-Jan-63 anyon 01-Jan-63 <	0 14.6 2 37.2 4 39.6 2 25.9 3 21.3 3 58.5 6 10.4 9 30.5 6 20.4 71.6 18.6 3 73.2 65.5 44.2 48.8 24.4 3 31.8 9 73.2 9 32.9 9 24.4	Feet 48.0 122.0 130.0 85.0 70.0 192.0 34.0 100.0 100.0 100.0 67.0 235.0 61.0 215.0 119.0 240.0 215.0 145.0 160.0 80.0 135.0 100.0 111.0 240.0 108.0 80.0 150.0	NP Metres 6.1 6.4 10.7 9.5 12.2 5.5 4.9 7.0 5.5 4.3 27.4 10.4 15.9 6.7 34.8 20.7 12.8 15.2 7.6 3.7 12.2 4.0 11.4 57.9 3.1 12.5	Feet 20.0 21.0 35.0 31.0 40.0 18.0 18.0 18.0 14.0 90.0 34.0 52.0 22.0 114.0 68.0 42.0 50.0 22.0 114.0 68.0 42.0 50.0 25.0 12.0 40.0 13.0 37.4 190.0	UID M35377.164044 M35377.182949 M35377.173191 M35377.171654 M35377.17654 M35377.176371 M35377.162832 M35377.162832 M35377.174922 M35377.174910 M35377.174910 M35377.174916 M35377.174916 M35377.174916 M35377.1763616 M35377.176314 M35377.176314 M35377.176314 M35377.176314 M35377.176314 M35377.176314 M35377.176314 M35377.176303 M35377.176303 M35377.176228 M35377.176422 M35377.172010 M35377.172004
Krueger, PeterSE 01-047-19 W4MLower Horseshoe C.Kyle, GordonNE 33-049-19 W4MSurficialLayden, Mike08-05-047-17 W4MBearpawLeibel, FrankNW 14-046-19 W4MLower Horseshoe C.Leoch, KenNW 12-044-17 W4MBearpawLiebl, Joe06-13-046-21 W4MUpper SurficialLovrod, Ole M.13-19-046-17 W4MBearpawLymall, Charles05-05-050-20 W4MUpper SurficialMagnien, WalterNE 12-047-20 W4MLower Horseshoe C.Martin Bros.10-13-047-20 W4MLower Horseshoe C.Martin Bros.10-13-047-20 W4MLower Horseshoe C.Morgery, WayneNW 08-043-21 W4MLower Horseshoe C.Mcgregor, JimNW 11-047-20 W4MLower Horseshoe C.Mcgregor, JimNW 11-047-20 W4MLower Horseshoe C.Megli, ErvinSW 36-044-20 W4MLower Horseshoe C.Megli, FaySE 24-044-20 W4MLower Horseshoe C.Merland Exp LtdSE 25-046-19 W4MLower Horseshoe C.Miller, DaveSW 16-041-20 W4MLower Horseshoe C.Miller, DaveSW 16-041-20 W4MLower Horseshoe C.Miller, DaveSW 20-049-20 W4MLower Horseshoe C.Miller, DaveSW 20-049-20 W4MLower Horseshoe C.Miguelon Prov Park #2-8008-33-049-20 W4MLower Horseshoe C.Miguelon Prov Park #2-8008-33-049-20 W4MLower Horseshoe C.Miguelon Prov Park #2-8008-33-049-20 W4MLower Horseshoe C.Moroe, J.W.06-01-048-21 W4MLower Horseshoe C	anyon 30-May-82 24-May-54 20-Aug-82 anyon 01-Jan-78 20-Aug-73 04-Jun-85 anyon 11-Sep-79 10-Aug-71 17-May-76 anyon 09-Mar-67 anyon 09-Mar-67 anyon 09-Jun-76 anyon 09-Jun-76 anyon 09-Jun-76 anyon 01-Jul-73 anyon 01-Jul-88 anyor 06-Aug-81 anyon 01-Jan-63 anyon 01-Jan-63	2 37.2 4 39.6 2 25.9 3 58.5 5 10.4 9 30.5 6 20.4 9 71.6 7 18.6 6 65.5 9 44.2 48.8 44.2 48.3 30.5 9 24.4	122.0 130.0 85.0 70.0 192.0 34.0 100.0 67.0 235.0 61.0 215.0 119.0 240.0 215.0 145.0 145.0 160.0 80.0 135.0 100.0 111.0 240.0 100.0 111.0 240.0 100.0 111.0 240.0 100.0 119.0 100.0 119.0 145.0 100.0 1	6.4 10.7 9.5 12.2 5.5 4.9 7.0 5.5 4.3 27.4 10.4 15.9 6.7 34.8 20.7 12.8 15.2 7.6 3.7 12.2 4.0 11.4 57.9 3.1	21.0 35.0 31.0 40.0 18.0 23.0 18.0 14.0 90.0 34.0 52.0 22.0 114.0 68.0 42.0 50.0 25.0 12.0 40.0 13.0 37.4 190.0	M35377.182949 M35377.173191 M35377.171654 M35377.174618 M35377.163540 M35377.162832 M35377.174322 M35377.174322 M35377.174325 M35377.174910 M35377.174910 M35377.174911 M35377.176452 M35377.176452 M35377.176454 M35377.176454 M35377.176454 M35377.176454 M35377.176454 M35377.176454 M35377.176454 M35377.176454 M35377.176454 M35377.176454 M35377.176454 M35377.176454 M35377.176454 M35377.176454 M35377.176454 M35377.176454 M35377.176452 M35377.176454 M35377.176452
Kyle, GordonNE 33-049-19 W4MSurficialLayden, Mike08-05-047-17 W4MBearpawLeibel, FrankNW 14-046-19 W4MLower Horseshoe C.Leoch, KenNW 12-044-17 W4MBearpawLiebl, Joe06-13-046-21 W4MUpper SurficialLintle, D.SW 30-041-20 W4MUpper SurficialLovrod, Ole M.13-19-046-17 W4MBearpawLymall, Charles05-05-050-20 W4MUpper SurficialMartin, BillSE 13-047-20 W4MLower Horseshoe C.Martin, BillSE 13-047-20 W4MLower Horseshoe C.Martin, BillSE 13-047-20 W4MLower Horseshoe C.Mcgarvey, WayneNW 08-043-21 W4MUpper Horseshoe C.Mcgarvey, WayneNW 36-044-20 W4MLower Horseshoe C.Mcgarvey, WayneNW 36-044-20 W4MLower Horseshoe C.Megli, ErvinSW 36-044-20 W4MLower Horseshoe C.Meglie, RaySE 24-046-21 W4MLower Horseshoe C.Miller, DaveSW 16-041-20 W4MLower Horseshoe C.Miller, DaveSW 20-049-20 W4MLower Horseshoe C.Miguelon Prov Park #2-8008-33-049-20 W4MLower Horseshoe C.Miguelon Prov Park #3-8004-33-049-20 W4MLower Horseshoe C.Moore, J.W.06-01-048-21 W4MLower Horseshoe C.Moor	24-May-54 20-Aug-82 anyon 01-Jan-78 20-Aug-73 04-Jun-85 anyon 11-Sep-79 10-Aug-71 17-May-76 anyon 09-Mar-67 anyon 09-Jun-76 anyon 09-Jun-76 anyon 09-Jun-76 anyon 01-Jul-73 anyon 01-Jul-73 anyon 01-Jul-73 anyon 01-Jul-73 anyon 01-Jul-73 anyon 01-Jul-73 anyon 01-Jul-73 anyon 01-Jul-88 anyon 01-Jul-88 anyon 01-Jul-88 anyon 01-Jun-88 anyon 01-Jun-88 anyon 01-Jun-88 anyon 01-Jun-88 anyon 01-Jun-89	4 39.6 2 25.9 3 21.3 3 58.5 5 10.4 9 30.5 6 20.4 9 71.6 7 18.6 6 65.5 3 36.3 3 73.2 65.5 44.2 48.8 41.2 30.5 33.8 9 73.2 9 32.9 9 24.4	130.0 85.0 70.0 192.0 34.0 100.0 200.0 210.0 235.0 61.0 235.0 61.0 215.0 119.0 240.0 215.0 145.0 160.0 80.0 135.0 100.0 111.0 240.0 108.0 80.0	10.7 9.5 12.2 5.5 4.9 7.0 5.5 4.3 27.4 10.4 15.9 6.7 34.8 20.7 12.8 15.2 7.6 3.7 12.2 4.0 11.4 57.9 3.1	35.0 31.0 40.0 18.0 18.0 18.0 31.0 23.0 18.0 14.0 90.0 34.0 52.0 22.0 114.0 68.0 42.0 50.0 25.0 12.0 40.0 13.0 37.4 190.0	M35377.173191 M35377.171654 M35377.171654 M35377.176618 M35377.163540 M35377.162832 M35377.1762832 M35377.177525 M35377.1774910 M35377.1774910 M35377.174911 M35377.176452 M35377.176452 M35377.176454 M35377.176454 M35377.176454 M35377.176454 M35377.176454 M35377.176454 M35377.176454 M35377.176454 M35377.176454 M35377.176454 M35377.176454 M35377.176452 M35377.176452
Layden, Mike08-05-047-17 W4MBearpawLeibel, FrankNW 14-046-19 W4MLower Horseshoe CLeoch, KenNW 12-044-17 W4MBearpawLiebl, Joe06-13-046-21 W4MUpper SufficialLitle, D.SW 30-041-20 W4MUpper SufficialMagnien, WalterNE 12-047-20 W4MLower Horseshoe CMartin Bros.10-13-047-20 W4MLower Horseshoe CMartin, BillSE 13-047-20 W4MLower Horseshoe CMcgarey, WayneNW 88-043-21 W4MUpper Horseshoe CMcgarey, WayneNW 88-044-20 W4MLower Horseshoe CMcgarey, WalterNE 28-046-21 W4MLower Horseshoe CMeglie, FininSW 36-044-20 W4MLower Horseshoe CMeglie, RaySE 34-044-20 W4MLower Horseshoe CMiller, DaveSW 16-041-20 W4MLower Horseshoe CMilguelon Prov Park #2-8008-33-049-20 W4MLower Horseshoe CMiquelon Prov Park #2-8004-33-049-20 W4MLower Horseshoe CMioquelon Prov Park #3-8004-33-049-20 W4MLower Horseshoe CMoore, J.W.06-01-048-21 W4MLower Horseshoe CMoore, J.W.06-01-048-21 W4MLower Horseshoe CMoore, J.W.06-01-048-21 W4MLower Horseshoe CMore, J.im03-01-048-21 W4MLower Horseshoe CMoore, J.W.06-01-048-21 W4MLower Horseshoe C<	20-Aug-82 anyon 01-Jan-78 20-Aug-73 04-Jun-85 anyon 11-Sep-79 10-Aug-71 17-May-76 anyon 09-Mar-67 anyon 09-Jun-76 anyon 09-Jun-76 anyon 01-Jul-73 anyon 01-Jul-73 anyon 01-Jul-73 anyon 01-Jul-73 anyon 02-Aug-85 anyor 06-Aug-81 anyon 01-Jan-63 anyon 01-Jan-68 anyon 04-Feb-80 07-Feb-80 anyon 11-Nov-69	2 25.9 3 21.3 3 58.5 5 10.4 9 30.5 1 30.5 6 20.4 9 71.6 7 18.6 6 65.5 3 36.3 3 73.2 65.5 44.2 48.8 41.2 3 41.2 3 30.5 3 33.8 9 73.2 9 24.4	85.0 70.0 192.0 34.0 100.0 67.0 235.0 61.0 215.0 119.0 240.0 215.0 145.0 145.0 160.0 80.0 135.0 100.0 111.0 240.0 108.0	9.5 12.2 5.5 4.9 7.0 5.5 4.3 27.4 10.4 15.9 6.7 34.8 20.7 12.8 15.2 7.6 3.7 12.2 4.0 11.4 57.9 3.1	31.0 40.0 18.0 23.0 14.0 90.0 34.0 52.0 22.0 114.0 68.0 42.0 50.0 25.0 25.0 12.0 40.0 13.0 37.4 190.0	M35377.171654 M35377.174618 M35377.163540 M35377.162832 M35377.174322 M35377.174322 M35377.174910 M35377.174910 M35377.174911 M35377.163616 M35377.176452 M35377.176314 M35377.176314 M35377.176314 M35377.176328 M35377.1762728 M35377.1762728 M35377.191382 M35377.191382
Leibel, FrankNW 14-046-19 W4MLower Horseshoe C.Leoch, KenNW 12-044-17 W4MBearpawLiebl, Joe06-13-046-21 W4MUpper SurficialLitle, D.SW 30-041-20 W4MUpper SurficialLovrod, Ole M.13-19-046-17 W4MBearpawLymall, Charles05-05-050-20 W4MUpper SurficialMaginen, WalterNE 12-047-20 W4MLower Horseshoe C.Martin Bros.10-13-047-20 W4MLower Horseshoe C.Martin Bros.10-13-047-20 W4MLower Horseshoe C.Mcgarvey, WayneNW 08-043-21 W4MLower Horseshoe C.Mcgarvey, WayneNW 08-044-20 W4MLower Horseshoe C.Mcgary, WalterNE 28-046-21 W4MLower Horseshoe C.Megli, ErvinSW 36-044-20 W4MLower Horseshoe C.Meglia, RaySE 34-044-20 W4MLower Horseshoe C.Miller, DaveSW 16-041-20 W4MMiddle Horseshoe C.Miller, DaveSW 16-041-20 W4MMiddle Horseshoe C.Miller, DaveSW 16-041-20 W4MLower Horseshoe C.Milley DaveSW 20-049-20 W4MLower Horseshoe C.Milley DaveSW 20-049-20 W4MLower Horseshoe C.Miquelon Prov Park #2-8008-33-049-20 W4MLower Horseshoe C.Miore, J.W.06-01-048-21 W4MLower Horseshoe C.Moore, Jim03-01-048-21 W4MLower Horseshoe C.Moore, Jim03-01-048-21 W4MLower Horseshoe C.Morris, A.K.SE 34-047-21 W4MLower Horseshoe C.Morris, A.K.SE 34-047-21 W4MLower Horseshoe C. <tr< td=""><td>anyon 01-Jan-78 20-Aug-73 04-Jun-85 anyon 11-Sep-79 10-Aug-71 17-May-76 anyon 09-Mar-67 anyon 09-Mar-67 anyon 09-Jun-76 anyon 18-Aug-78 anyon 01-Jul-73 anyon 01-Jul-73 anyon 01-Jul-73 anyon 02-Aug-85 anyor 01-Aug-78 anyon 01-Aug-81 anyon 01-Jan-63 anyon 04-Feb-80 07-Feb-80 anyon 11-Nov-69</td><td>3 21.3 3 58.5 4 30.5 5 20.4 6 20.4 7 18.6 6 65.5 3 36.3 3 73.2 65.5 24.4 3 41.2 48.8 24.4 5 24.4 3 73.2 9 32.9 9 24.4</td><td>70.0 192.0 34.0 100.0 67.0 235.0 61.0 215.0 119.0 240.0 215.0 145.0 160.0 80.0 135.0 100.0 111.0 240.0 108.0 80.0</td><td>12.2 5.5 4.9 7.0 5.5 4.3 27.4 10.4 15.9 6.7 34.8 20.7 12.8 15.2 7.6 3.7 12.2 4.0 11.4 57.9 3.1</td><td>40.0 18.0 16.0 23.0 18.0 14.0 90.0 34.0 52.0 22.0 114.0 68.0 42.0 50.0 25.0 12.0 40.0 13.0 37.4 190.0</td><td>M35377.174618 M35377.163540 M35377.162832 M35377.1762832 M35377.174322 M35377.174910 M35377.174910 M35377.174916 M35377.174916 M35377.163616 M35377.176452 M35377.176314 M35377.176314 M35377.176318 M35377.1762728 M35377.1762728 M35377.1762728 M35377.1762728 M35377.176422 M35377.191382 M35377.172010</td></tr<>	anyon 01-Jan-78 20-Aug-73 04-Jun-85 anyon 11-Sep-79 10-Aug-71 17-May-76 anyon 09-Mar-67 anyon 09-Mar-67 anyon 09-Jun-76 anyon 18-Aug-78 anyon 01-Jul-73 anyon 01-Jul-73 anyon 01-Jul-73 anyon 02-Aug-85 anyor 01-Aug-78 anyon 01-Aug-81 anyon 01-Jan-63 anyon 04-Feb-80 07-Feb-80 anyon 11-Nov-69	3 21.3 3 58.5 4 30.5 5 20.4 6 20.4 7 18.6 6 65.5 3 36.3 3 73.2 65.5 24.4 3 41.2 48.8 24.4 5 24.4 3 73.2 9 32.9 9 24.4	70.0 192.0 34.0 100.0 67.0 235.0 61.0 215.0 119.0 240.0 215.0 145.0 160.0 80.0 135.0 100.0 111.0 240.0 108.0 80.0	12.2 5.5 4.9 7.0 5.5 4.3 27.4 10.4 15.9 6.7 34.8 20.7 12.8 15.2 7.6 3.7 12.2 4.0 11.4 57.9 3.1	40.0 18.0 16.0 23.0 18.0 14.0 90.0 34.0 52.0 22.0 114.0 68.0 42.0 50.0 25.0 12.0 40.0 13.0 37.4 190.0	M35377.174618 M35377.163540 M35377.162832 M35377.1762832 M35377.174322 M35377.174910 M35377.174910 M35377.174916 M35377.174916 M35377.163616 M35377.176452 M35377.176314 M35377.176314 M35377.176318 M35377.1762728 M35377.1762728 M35377.1762728 M35377.1762728 M35377.176422 M35377.191382 M35377.172010
Leoch, KenNW 12-044-17 W4MBearpawLiebl, Joe06-13-046-21 W4MUpper SurficialLitle, D.SW 30-041-20 W4MUpper Horseshoe caLovrod, Ole M.13-19-046-17 W4MBearpawLymall, Charles05-05-050-20 W4MUpper SurficialMagnien, WalterNE 12-047-20 W4MLower Horseshoe CaMartin, BillSE 13-047-20 W4MLower Horseshoe CaMartin, BillSE 13-047-20 W4MLower Horseshoe CaMcgarvey, WayneNW 08-043-21 W4MUpper Horseshoe CaMcgregor, JimNW 11-047-20 W4MLower Horseshoe CaMcgrary, WalterNE 28-046-21 W4MLower Horseshoe CaMeglie, ErvinSW 36-044-20 W4MLower Horseshoe CaMeglie, RaySE 34-044-20 W4MLower Horseshoe CaMiglien, DaveSW 16-041-20 W4MLower Horseshoe CaMiguelon Lake Prov ParkSW 20-049-20 W4MLower Horseshoe CaMiquelon Lake Prov ParkSW 20-049-20 W4MLower Horseshoe CaMiquelon Lake Prov ParkSW 20-049-20 W4MLower Horseshoe CaMoore, J.W.06-01-048-21 W4MLower Horseshoe CaMoore, NoelSW 04-048-21 W4MLower Hors	20-Aug-73 04-Jun-85 anyon 11-Sep-79 10-Aug-71 17-May-76 anyon 21-Jun-79 anyon 09-Mar-67 anyon 09-Jun-76 anyon 18-Aug-78 anyon 01-Jul-73 anyon 01-Jul-73 anyon 01-Jul-73 anyon 02-Aug-85 anyon 01-Aug-85 anyon 01-Jan-63 anyon 01-Jan-63 anyon 04-Feb-80 07-Feb-80 anyon 11-Nov-69	3 58.5 i 10.4 i 30.5 i 30.3 i 73.2 i 32.9 i 32.9 i 24.4	192.0 34.0 100.0 67.0 235.0 61.0 215.0 119.0 240.0 215.0 145.0 160.0 80.0 135.0 100.0 111.0 240.0 100.0 111.0 240.0 100.0 111.0 240.0 100.0	5.5 4.9 7.0 5.5 4.3 27.4 10.4 15.9 6.7 34.8 20.7 12.8 15.2 7.6 3.7 12.2 4.0 11.4 57.9 3.1	18.0 16.0 23.0 18.0 14.0 90.0 34.0 52.0 22.0 114.0 68.0 42.0 50.0 25.0 12.0 40.0 13.0 37.4 190.0	M35377.163540 M35377.176371 M35377.162832 M35377.174322 M35377.174910 M35377.174916 M35377.174916 M35377.174911 M35377.163616 M35377.176814 M35377.176314 M35377.176313 M35377.176328 M35377.1762728 M35377.1762728 M35377.191382 M35377.172010
Liebl, Joe06-13-046-21 W4MUpper SurficialLittle, D.SW 30-041-20 W4MUpper Horseshoe czLovrod, Ole M.13-19-046-17 W4MBearpawLymall, Charles05-05-05-02 W4MUuper Horseshoe CzMartin, BillSE 13-047-20 W4MLower Horseshoe CZMartin, BillSE 13-047-20 W4MLower Horseshoe CZMcgregor, JimNW 10-047-20 W4MLower Horseshoe CZMcgregor, JimNW 11-047-20 W4MLower Horseshoe CZMcgregor, JimNW 36-043-21 W4MLower Horseshoe CZMeglie, RaySE 34-044-20 W4MLower Horseshoe CZMiller, DaveSW 16-041-20 W4MMiddle Horseshoe CZMiller, DaveSW 16-041-20 W4MLower Horseshoe CZMiller, DaveSW 16-041-20 W4MLower Horseshoe CZMiller, DaveSW 20-049-20 W4MLower Horseshoe CZMiguelon Prov Park #2-8008-33-049-20 W4MLower Horseshoe CZMoore, J.W.06-01-048-21 W4MLower Horseshoe CZMoore, Jim03-01-048-21 W4MLower Horseshoe CZMoore, NoelSW 04-048-20 W4MLower Horseshoe CZMoore, NoelSW 04-048-21 W4MLower Horseshoe CZMoore, JohnNE 20-046-19 W4MLower Horseshoe CZMoore, JohnNE 20-046-19 W4MLower Horseshoe CZMunro, Carcy16-35-046-19 W4MLower Horseshoe CZ<	04-Jun-85 anyon 11-Sep-79 10-Aug-71 17-May-76 anyon 21-Jun-79 anyon 09-Mar-67 anyon 09-Jun-76 anyon 18-Aug-78 anyon 18-Aug-78 anyon 11-Jun-70 anyon 11-Jun-70 anyon 02-Aug-85 anyon 02-Aug-81 anyon 01-Jul-73 anyon 01-Aug-78 anyon 01-Aug-85 anyon 01-Jul-73 anyon 01-Aug-85 anyon 01-Jul-73 anyon 01-Jul-73 anyon 01-Aug-85 anyon 01-Jul-73 anyon 01-Aug-85 anyon 04-Feb-80 07-Feb-80 07-Feb-80	i 10.4 i 30.5 i 30.5 i 30.5 i 30.5 i 30.5 i 30.5 i 20.4 i 71.6 i 18.6 i 65.5 i 36.3 i 73.2 i 30.5 i 33.8 j 73.2 i 32.9 j 24.4	34.0 100.0 67.0 235.0 61.0 215.0 119.0 240.0 215.0 145.0 160.0 80.0 135.0 100.0 111.0 240.0 108.0 80.0	4.9 7.0 5.5 4.3 27.4 10.4 15.9 6.7 34.8 20.7 12.8 15.2 7.6 3.7 12.2 4.0 11.4 57.9 3.1	16.0 23.0 18.0 14.0 90.0 34.0 52.0 22.0 114.0 68.0 42.0 50.0 25.0 12.0 40.0 13.0 37.4 190.0	M35377.176371 M35377.162832 M35377.174322 M35377.174322 M35377.174910 M35377.174910 M35377.174916 M35377.174911 M35377.176301 M35377.176303 M35377.176303 M35377.176303 M35377.1762728 M35377.172010
Litle, D.SW 30-041-20 W4MUpper Horseshoe caLovrod, Ole M.13-19-046-17 W4MBearpawLymall, Charles05-05-05-02 W4MUpper SurficialMagnien, WalterNE 12-047-20 W4MLower Horseshoe CaMartin Bros.10-13-047-20 W4MLower Horseshoe CaMartin, BillSE 13-047-20 W4MLower Horseshoe CaMcgarvey, WayneNW 08-043-21 W4MUpper Horseshoe CaMcgregor, JimNW 11-047-20 W4MLower Horseshoe CaMcgarvey, WayterNE 28-046-21 W4MLower Horseshoe CaMegli, ErvinSW 36-044-20 W4MLower Horseshoe CaMeglia, FavinSW 36-044-20 W4MLower Horseshoe CaMeglia, RaySE 34-044-20 W4MLower Horseshoe CaMiller, DaveSW 16-041-20 W4MLower Horseshoe CaMiguelon Lake Prov ParkSW 20-049-20 W4MLower Horseshoe CaMiguelon Prov Park #2-8008-33-049-20 W4MLower Horseshoe CaMiguelon Prov Park #3-8004-33-049-20 W4MLower Horseshoe CaMoore, J.W.06-01-048-21 W4M<	anyon 11-Sep-79 10-Aug-71 17-May-76 anyon 21-Jun-79 anyon 09-Mar-67 anyon 09-Jun-76 anyon 18-Aug-78 anyon 01-Jul-73 anyon 01-Jul-73 anyon 01-Jul-73 anyon 02-Aug-85 anyor 04-Aug-81 anyon 04-Feb-80 07-Feb-80 anyon 11-Nov-69	a) 30.5 a) 30.5 b) 71.6 c) 30.5 a) 36.3 a) 73.2 c) 44.2 48.8 24.4 a) 30.5 a) 33.8 c) 73.2 c) 32.9 c) 24.4	100.0 100.0 67.0 235.0 61.0 215.0 119.0 240.0 215.0 145.0 160.0 80.0 135.0 100.0 111.0 240.0 101.0 80.0 101.0 80.0 102.0	7.0 5.5 4.3 27.4 10.4 15.9 6.7 34.8 20.7 12.8 15.2 7.6 3.7 12.2 4.0 11.4 57.9 3.1	23.0 18.0 14.0 90.0 34.0 52.0 22.0 114.0 68.0 42.0 50.0 25.0 12.0 40.0 13.0 37.4 190.0	M35377.162832 M35377.174322 M35377.177525 M35377.177525 M35377.174910 M35377.174910 M35377.174911 M35377.174911 M35377.174891 M35377.176452 M35377.176303 M35377.176303 M35377.176303 M35377.162728 M35377.191382 M35377.191382
Lovrod, Ole M.13-19-046-17 W4MBearpawLymall, Charles05-05-05-20 W4MUpper SurficialMagnien, WalterNE 12-047-20 W4MLower Horseshoe C.Martin, BillSE 13-047-20 W4MLower Horseshoe C.Mcgarvey, WayneNW 08-043-21 W4MUpper Horseshoe C.Mcgarvey, WayneNW 08-043-21 W4MUpper Horseshoe C.Mcgarvey, WayneNW 11-047-20 W4MLower Horseshoe C.Mcgray, JimNW 11-047-20 W4MLower Horseshoe C.Mcgray, WalterNE 28-046-21 W4MLower Horseshoe C.Meglie, ErvinSW 36-044-20 W4MLower Horseshoe C.Meglie, RaySE 34-044-20 W4MLower Horseshoe C.Miller, DaveSW 16-041-20 W4MMiddle Horseshoe C.Miller, DaveSW 16-041-20 W4MMiddle Horseshoe C.Miguelon Lake Prov ParkSW 20-049-20 W4MLower Horseshoe C.Miquelon Prov Park #2-8008-33-049-20 W4MLower Horseshoe C.Moore, J.W.06-01-048-21 W4MLower Horseshoe C.Moore, J.W.06-01-048-21 W4MLower Horseshoe C.Moore, Jim03-01-048-21 W4MLower Horseshoe C.Moore, Jac03-01-048-21 W4MLower Horseshoe C.Moore, JohnNE 20-046-19 W4MLower Horseshoe C.Morris, A.K.SE 34-047-21 W4MLower Horseshoe C.Murro, Carcy16-35-046-19 W4MLower Horseshoe C.Neate, BertNE 80-048-18 W4MLower Horseshoe C.Neederlof, RonSE 04-047-21 W4MLower Horseshoe C.Neederlof, RonSE 04-047-21 W4M<	10-Aug-71 17-May-76 anyon 21-Jun-79 anyon 09-Mar-67 anyon 09-Jun-76 anyon 18-Aug-78 anyon 20-Sep-83 anyon 01-Jul-73 anyon 01-Jul-73 anyon 01-Jul-73 anyon 01-Jul-73 anyon 02-Aug-85 anyon 31-Aug-78 anyon 02-Aug-85 anyon 01-Jan-63 anyon 04-Feb-80 07-Feb-80 07-Feb-80	30.5 20.4 71.6 18.6 65.5 33732 65.5 44.2 48.8 24.4 30.5 33.8 73.2 33.8 73.2 33.8 73.2 32.9 24.4	100.0 67.0 235.0 61.0 215.0 119.0 240.0 215.0 145.0 160.0 80.0 135.0 100.0 111.0 240.0 108.0 80.0	5.5 4.3 27.4 10.4 15.9 6.7 34.8 20.7 12.8 15.2 7.6 3.7 12.2 4.0 11.4 57.9 3.1	18.0 14.0 90.0 34.0 52.0 22.0 114.0 68.0 42.0 50.0 25.0 12.0 40.0 13.0 37.4 190.0	M35377.174322 M35377.177525 M35377.177525 M35377.174910 M35377.174916 M35377.174911 M35377.163616 M35377.176452 M35377.176314 M35377.176303 M35377.176303 M35377.162728 M35377.191382 M35377.191382 M35377.172010
Lymall, Charles05-05-050-20 W4MUpper SurficialMagnien, WalterNE 12-047-20 W4MLower Horseshoe C.Martin, BillSE 13-047-20 W4MLower Horseshoe C.Mcgarey, WayneNW 08-043-21 W4MUpper Horseshoe C.Mcgaregor, JimNW 11-047-20 W4MLower Horseshoe C.Meglie, ErvinSW 36-044-20 W4MLower Horseshoe C.Meglie, RaySE 34-044-20 W4MLower Horseshoe C.Merland Exp LtdSE 25-046-19 W4MLower Horseshoe C.Miller, DaveSW 16-041-20 W4MMiddle Horseshoe C.Millep, DaveSW 16-041-20 W4MLower Horseshoe C.Miguelon Prov Park #2-8008-33-049-20 W4MLower Horseshoe C.Miquelon Prov Park #2-8004-33-049-20 W4MLower Horseshoe C.Moore, J.W.06-01-048-21 W4MLower Horseshoe C.Moore, NoelSW 04-048-21 W4MLower Horseshoe C.Moore, NoelSW 04-048-21 W4MLower Horseshoe C.Murno, Carcy16-35-046-19 W4MLower Horseshoe C.Neave, BertNE 08-048-18 W4MLower Horseshoe C.Neekon, JohnNE 24-044-19 W4MSurficialNew Norway, Village Of11-045-21 W4MLower Horseshoe C.New Norway, Village Of11-045-21 W4MLower Horseshoe C.Nordin, TerrenceNW 20-048-20 W4MLower Horseshoe C.Nordin, Terr	17-May-76 anyon 21-Jun-79 anyon 09-Mar-67 anyon 09-Jun-76 anyon 18-Aug-78 anyon 20-Sep-83 anyon 01-Jul-73 anyon 01-Jul-73 anyon 01-Jul-77 anyon 02-Aug-85 anyor 06-Aug-81 anyon 01-Jan-63 anyon 01-Jan-63 anyon 04-Feb-80 07-Feb-80 anyon 11-Nov-69	3 20.4 7 71.6 7 18.6 5 65.5 3 36.3 3 73.2 65.5 44.2 48.8 43.41.2 3 41.2 3 33.8 9 73.2 9 32.9 9 24.4	67.0 235.0 61.0 215.0 119.0 240.0 215.0 145.0 160.0 80.0 135.0 100.0 111.0 240.0 108.0 80.0	4.3 27.4 10.4 15.9 6.7 34.8 20.7 12.8 15.2 7.6 3.7 12.2 4.0 11.4 57.9 3.1	14.0 90.0 34.0 52.0 22.0 114.0 68.0 42.0 50.0 25.0 12.0 40.0 13.0 37.4 190.0	M35377.177525 M35377.174910 M35377.174916 M35377.174916 M35377.163616 M35377.174891 M35377.176452 M35377.176524 M35377.176303 M35377.1763718 M35377.176452 M35377.176452 M35377.176452 M35377.176452 M35377.191382 M35377.191382
Magnien, WalterNE 12-047-20 W4MLower Horseshoe C.Martin Bros.10-13-047-20 W4MLower Horseshoe C.Martin, BillSE 13-047-20 W4MLower Horseshoe C.Mcgrayey, WayneNW 08-043-21 W4MUpper Horseshoe C.Mcgregor, JimNW 11-047-20 W4MLower Horseshoe C.Mcnary, WalterNE 28-046-21 W4MLower Horseshoe C.Megli, ErvinSW 36-044-20 W4MLower Horseshoe C.Meglie, RaySE 34-044-20 W4MLower Horseshoe C.Merland Exp LtdSE 25-046-19 W4MLower Horseshoe C.Miller, DaveSW 16-041-20 W4MMiddle Horseshoe C.Miller, DaveSW 16-041-20 W4MLower Horseshoe C.Milley, CharlieNW 30-046-21 W4MLower Horseshoe C.Miquelon Lake Prov ParkSW 20-049-20 W4MLower Horseshoe C.Miquelon Prov Park #2-8008-33-049-20 W4MLower Horseshoe C.Moore, J.W.06-01-048-21 W4MLower Horseshoe C.Moore, J.W.06-01-048-21 W4MLower Horseshoe C.Moore, Join03-01-048-21 W4MLower Horseshoe C.Moore, NoelSW 04-048-21 W4MLower Horseshoe C.Murno, Carcy16-35-046-19 W4MLower Horseshoe C.Murno, Carcy16-35-046-19 W4MLower Horseshoe C.Neave, BertNE 30-048-18 W4MLower Horseshoe C.New Norway, Village Of12-11-045-21 W4MLower Horseshoe C.New Norway, Village Of12-11-045-21 W4MLower Horseshoe C.New Norway, Village Of12-11-045-21 W4MLower Horseshoe C. <td< td=""><td>anyon 21-Jun-79 anyon 09-Mar-67 anyon 09-Jun-76 anyon 18-Aug-78 anyon 20-Sep-83 anyon 01-Jul-73 anyon 01-Jul-73 anyon 11-Jun-70 anyon 02-Aug-85 anyor 06-Aug-81 anyon 01-Jan-63 anyon 04-Feb-80 07-Feb-80 anyon anyon 11-Nov-69</td><td>71.6 18.6 65.5 36.3 73.2 65.5 44.2 48.8 24.4 341.2 30.5 33.8 73.2 34.2 35.5 34.2 35.3 34.2 35.3 32.9 32.9 34.4</td><td>235.0 61.0 215.0 119.0 240.0 215.0 145.0 160.0 80.0 135.0 100.0 111.0 240.0 108.0 80.0</td><td>27.4 10.4 15.9 6.7 34.8 20.7 12.8 15.2 7.6 3.7 12.2 4.0 11.4 57.9 3.1</td><td>90.0 34.0 52.0 22.0 114.0 68.0 42.0 50.0 25.0 12.0 40.0 13.0 37.4 190.0</td><td>M35377.174910 M35377.174916 M35377.174911 M35377.163616 M35377.174891 M35377.176452 M35377.176452 M35377.176314 M35377.176314 M35377.1765728 M35377.176452 M35377.1762728 M35377.191382 M35377.191382</td></td<>	anyon 21-Jun-79 anyon 09-Mar-67 anyon 09-Jun-76 anyon 18-Aug-78 anyon 20-Sep-83 anyon 01-Jul-73 anyon 01-Jul-73 anyon 11-Jun-70 anyon 02-Aug-85 anyor 06-Aug-81 anyon 01-Jan-63 anyon 04-Feb-80 07-Feb-80 anyon anyon 11-Nov-69	71.6 18.6 65.5 36.3 73.2 65.5 44.2 48.8 24.4 341.2 30.5 33.8 73.2 34.2 35.5 34.2 35.3 34.2 35.3 32.9 32.9 34.4	235.0 61.0 215.0 119.0 240.0 215.0 145.0 160.0 80.0 135.0 100.0 111.0 240.0 108.0 80.0	27.4 10.4 15.9 6.7 34.8 20.7 12.8 15.2 7.6 3.7 12.2 4.0 11.4 57.9 3.1	90.0 34.0 52.0 22.0 114.0 68.0 42.0 50.0 25.0 12.0 40.0 13.0 37.4 190.0	M35377.174910 M35377.174916 M35377.174911 M35377.163616 M35377.174891 M35377.176452 M35377.176452 M35377.176314 M35377.176314 M35377.1765728 M35377.176452 M35377.1762728 M35377.191382 M35377.191382
Martin Bros.10-13-047-20 W4MLower Horseshoe CMartin, BillSE 13-047-20 W4MLower Horseshoe CMcgregor, JimNW 08-043-21 W4MUpper Horseshoe CMcnary, WalterNE 28-046-21 W4MLower Horseshoe CMegli, ErvinSW 36-044-20 W4MLower Horseshoe CMegli, ErvinSW 36-044-20 W4MLower Horseshoe CMegli, RaySE 34-044-20 W4MLower Horseshoe CMegli, RaySE 34-044-20 W4MLower Horseshoe CMiller, DaveSW 16-041-20 W4MMiddle Horseshoe CMiller, DaveSW 20-049-20 W4MLower Horseshoe CMiguelon Lake Prov ParkSW 20-049-20 W4MLower Horseshoe CMiquelon Prov Park #2-8008-33-049-20 W4MLower Horseshoe CMiquelon Prov Park #3-8004-33-049-20 W4MLower Horseshoe CMiquelon Prov Park #3-8004-33-049-20 W4MLower Horseshoe CMoore, J.W.06-01-048-21 W4MLower Horseshoe CMoore, Jim03-01-048-21 W4MLower Horseshoe CMoore, Jim03-01-048-21 W4MLower Horseshoe CMorris, A.K.SE 34-047-21 W4MLower Horseshoe CMurno, Carcy16-35-046-19 W4MLower Horseshoe CNuirhead, JohnNE 20-046-19 W4MLower Horseshoe CNeave, BertNE 08-048-18 W4MLower Horseshoe CNeess, Gladys05-08-049-19 W4MLower Horseshoe CNew Norway, Village Of12-11-045-21 W4MMiddle Horseshoe CNew Norway, Village Of12-11-045-21 W4MLower Horseshoe CNordin, Terrence	anyon 09-Mar-67 anyon 09-Jun-76 anyon 18-Aug-78 anyon 20-Sep-83 anyon 01-Jul-73 anyon 01-Jul-73 anyon 16-Apr-77 anyon 02-Aug-85 anyor 06-Aug-81 anyon 01-Jan-63 anyon 01-Jan-63 anyon 04-Feb-80 07-Feb-80 anyon 11-Nov-69	18.6 65.5 36.3 73.2 65.5 44.2 48.8 24.4 30.5 33.8 73.2 34.2 52.4 35.5 65.5 73.2 33.8 73.2 32.9 24.4	61.0 215.0 119.0 240.0 215.0 145.0 160.0 80.0 135.0 100.0 111.0 240.0 108.0 80.0	10.4 15.9 6.7 34.8 20.7 12.8 15.2 7.6 3.7 12.2 4.0 11.4 57.9 3.1	34.0 52.0 22.0 114.0 68.0 42.0 50.0 25.0 12.0 40.0 13.0 37.4 190.0	M35377.174916 M35377.174911 M35377.163616 M35377.174891 M35377.176452 M35377.176314 M35377.176313 M35377.176314 M35377.1765728 M35377.176462 M35377.191382 M35377.172010
Martin, BillSE 13-047-20 W4MLower Horseshoe CMcgarvey, WayneNW 08-043-21 W4MUpper Horseshoe CMcgregor, JimNW 11-047-20 W4MLower Horseshoe CMeglie, ErvinSW 36-044-20 W4MLower Horseshoe CMeglie, RaySE 34-044-20 W4MLower Horseshoe CMerland Exp LtdSE 25-046-19 W4MLower Horseshoe CMiller, DaveSW 16-041-20 W4MLower Horseshoe CMiller, DaveSW 16-041-20 W4MLower Horseshoe CMiller, DaveSW 16-041-20 W4MLower Horseshoe CMiquelon Lake Prov ParkSW 20-049-20 W4MLower Horseshoe CMiquelon Prov Park #2-8008-33-049-20 W4MLower Horseshoe CMiquelon Prov Park #2-8004-33-049-20 W4MLower Horseshoe CMoore, J.W.06-01-048-21 W4MLower Horseshoe CMoore, J.W.06-01-048-21 W4MLower Horseshoe CMoore, Jam03-01-048-21 W4MLower Horseshoe CMoore, NoelSW 04-048-21 W4MLower Horseshoe CMoore, NoelSW 04-048-21 W4MLower Horseshoe CMorris, A.K.SE 34-047-21 W4MLower Horseshoe CMurno, Carcy16-35-046-19 W4MLower Horseshoe CNeave, BertNE 08-048-18 W4MLower Horseshoe CNederlof, RonSE 04-047-21 W4MLower Horseshoe CNeedrof, RonSE 03-046-21 W4MLower Horseshoe CNew Norway, Village Of11-045-21 W4MLower Horseshoe CNew Norway, Village Of11-045-21 W4MLower Horseshoe CNordin, TerrenceNW 20-0	anyon 09-Jun-76 anyon 18-Aug-78 anyon 20-Sep-83 anyon 01-Jul-73 anyon 11-Jun-70 anyon 16-Apr-77 anyon 02-Aug-85 anyor 06-Aug-81 anyon 01-Jan-63 anyon 01-Jan-63 anyon 11-Nov-69	6 65.5 3 36.3 3 73.2 65.5 44.2 48.8 24.4 3 41.2 3 30.5 3 33.8 73.2 32.9 2 44.4	215.0 119.0 240.0 215.0 145.0 160.0 80.0 135.0 100.0 111.0 240.0 108.0 80.0	15.9 6.7 34.8 20.7 12.8 15.2 7.6 3.7 12.2 4.0 11.4 57.9 3.1	52.0 22.0 114.0 68.0 42.0 50.0 25.0 12.0 40.0 13.0 37.4 190.0	M35377.174911 M35377.163616 M35377.174891 M35377.176452 M35377.176314 M35377.176314 M35377.176313 M35377.174511 M35377.1745728 M35377.176462 M35377.191382 M35377.172010
Mcgarvey, WayneNW 08-043-21 W4MUpper Horseshoe caMcgregor, JimNW 11-047-20 W4MLower Horseshoe CaMcnary, WalterNE 28-046-21 W4MLower Horseshoe CaMeglie, ErvinSW 36-044-20 W4MLower Horseshoe CaMeglie, RaySE 34-044-20 W4MLower Horseshoe CaMerland Exp LtdSE 25-046-19 W4MLower Horseshoe CaMiller, DaveSW 16-041-20 W4MMiddle Horseshoe CaMiller, DaveSW 16-041-20 W4MMiddle Horseshoe CaMiguelon Lake Prov ParkSW 20-049-20 W4MLower Horseshoe CaMiquelon Prov Park #2-8008-33-049-20 W4MLower Horseshoe CaMiquelon Prov Park #3-8004-33-049-20 W4MLower Horseshoe CaMoore, J.W.06-01-048-21 W4MLower Horseshoe CaMoore, Jum03-01-048-21 W4MLower Horseshoe CaMoore, NoelSW 04-048-21 W4MLower Horseshoe CaMoore, NoelSW 04-048-21 W4MLower Horseshoe CaMoore, NoelSW 04-048-21 W4MLower Horseshoe CaMurro, Carcy16-35-046-19 W4MLower Horseshoe CaMurro, Carcy16-35-046-19 W4MLower Horseshoe CaNeave, BertNE 08-048-18 W4MLower Horseshoe CaNeelson, JohnNE 34-047-21 W4MLower Horseshoe CaNeelson, JohnNE 34-047-21 W4MLower Horseshoe CaNew Norway, Village Of12-11-045-21 W4MLower Horseshoe CaNordin, TerrenceNW 20-048-20 W4MLower Horseshoe CaNordin, TerrenceNW 20-048-20 W4MLower Horseshoe CaOls	anyon 18-Aug-78 anyon 20-Sep-83 anyon 01-Jul-73 anyon 11-Jun-70 anyon 16-Apr-77 anyon 02-Aug-85 anyor 06-Aug-81 anyon 01-Jan-63 anyon 04-Feb-80 07-Feb-80 anyon 11-Nov-69	3 36.3 3 73.2 65.5 44.2 48.8 44.2 48.8 41.2 3 41.2 3 30.5 3 33.8 0 73.2 0 32.9 9 24.4	119.0 240.0 215.0 145.0 160.0 135.0 100.0 111.0 240.0 108.0 80.0	6.7 34.8 20.7 12.8 15.2 7.6 3.7 12.2 4.0 11.4 57.9 3.1	22.0 114.0 68.0 42.0 50.0 25.0 12.0 40.0 13.0 37.4 190.0	M35377.163616 M35377.174891 M35377.176452 M35377.176314 M35377.176303 M35377.174511 M35377.162728 M35377.176462 M35377.191382 M35377.172010
Mcgregor, JimNW 11-047-20 W4MLower Horseshoe CMcnary, WalterNE 28-046-21 W4MLower Horseshoe CMegli, ErvinSW 36-044-20 W4MLower Horseshoe CMeglia, RaySE 34-044-20 W4MLower Horseshoe CMerland Exp LtdSE 25-046-19 W4MLower Horseshoe CMiller, DaveSW 16-041-20 W4MMiddle Horseshoe CMiller, DaveSW 16-041-20 W4MMiddle Horseshoe CMiguelon Lake Prov ParkSW 20-049-20 W4MLower Horseshoe CMiquelon Prov Park #2-8008-33-049-20 W4MLower Horseshoe CMiquelon Prov Park #3-8004-33-049-20 W4MLower Horseshoe CMoore, J.W.06-01-048-21 W4MLower Horseshoe CMoore, Jim03-01-048-21 W4MLower Horseshoe CMoore, NoelSW 04-048-21 W4MLower Horseshoe CMorris, A.K.SE 34-047-21 W4MLower Horseshoe CMurhead, JohnNE 20-046-19 W4MLower Horseshoe CMurhead, JohnNE 20-046-19 W4MLower Horseshoe CNeave, BertNE 08-048-18 W4MLower Horseshoe CNeave, BertNE 08-048-18 W4MLower Horseshoe CNeederlof, RonSE 04-047-21 W4MLower Horseshoe CNew Norway, Village Of11-045-21 W4MLower Horseshoe CNew Norway, Village Of11-045-21 W4MLower Horseshoe CNew Norway, Village Of11-045-21 W4MLower Horseshoe CNordin, TerrenceNW 20-048-20 W4MLower Horseshoe CNordin, TerrenceNW 20-048-20 W4MLower Horseshoe COlson, Elme	anyon 20-Sep-83 anyon 01-Jul-73 anyon 11-Jun-70 anyon 16-Apr-77 anyon 02-Aug-85 anyon 031-Aug-78 anyon 01-Jan-63 anyon 01-Jan-63 anyon 04-Feb-80 07-Feb-80 anyon 11-Nov-69	3 73.2 65.5 0 44.2 48.8 5 24.4 3 41.2 30.5 33.8 0 73.2 0 32.9 0 24.4	240.0 215.0 145.0 160.0 135.0 100.0 111.0 240.0 108.0 80.0	34.8 20.7 12.8 15.2 7.6 3.7 12.2 4.0 11.4 57.9 3.1	114.0 68.0 42.0 50.0 25.0 12.0 40.0 13.0 37.4 190.0	M35377.174891 M35377.176452 M35377.176314 M35377.176303 M35377.174511 M35377.162728 M35377.162728 M35377.191382 M35377.191382 M35377.172010
Mcnary, WalterNE 28-046-21 W4MLower Horseshoe CMegli, ErvinSW 36-044-20 W4MLower Horseshoe CMeglie, RaySE 34-044-20 W4MLower Horseshoe CMerland Exp LtdSE 25-046-19 W4MLower Horseshoe CMiller, DaveSW 16-041-20 W4MMiddle Horseshoe CMiller, DaveSW 20-049-20 W4MLower Horseshoe CMiguelon Lake Prov ParkSW 20-049-20 W4MLower Horseshoe CMiquelon Prov Park #2-8008-33-049-20 W4MLower Horseshoe CMiquelon Prov Park #3-8004-33-049-20 W4MLower Horseshoe CMoore, J.W.06-01-048-21 W4MLower Horseshoe CMoore, NeelSW 04-048-21 W4MLower Horseshoe CMoore, NoelSW 04-048-21 W4MLower Horseshoe CMorris, A.K.SE 34-047-21 W4MLower Horseshoe CMurno, Carcy16-35-046-19 W4MLower Horseshoe CNeave, BertNE 08-048-18 W4MLower Horseshoe CNeave, BertNE 08-048-18 W4MLower Horseshoe CNew Norway, Village Of12-11-045-21 W4MLower Horseshoe CNew Norway, Village Of12-11-045-21 W4MLower Horseshoe CNew Norway, Village Of12-11-045-21 W4MLower Horseshoe CNordin, TerrenceNW 20-048-20 W4MLower Horseshoe CNordin, TerrenceNW 20-048-20 W4MLower Horseshoe CNordin, TerrenceNW 20-048-21 W4MLower Horseshoe COlson, ElmerSE 15-047-18 W4MLower Horseshoe COlson, FirankNE 08-043-21 W4MLower Horseshoe COlson, F	anyon 01-Jul-73 anyon 11-Jun-70 anyon 16-Apr-77 anyon 02-Aug-85 anyon 031-Aug-78 anyon 06-Aug-81 anyon 01-Jan-63 anyon 04-Feb-80 07-Feb-80 anyon 11-Nov-69	65.5 44.2 48.8 24.4 3 41.2 30.5 33.8 73.2 32.9 24.4	215.0 145.0 160.0 80.0 135.0 100.0 111.0 240.0 108.0 80.0	20.7 12.8 15.2 7.6 3.7 12.2 4.0 11.4 57.9 3.1	68.0 42.0 50.0 25.0 12.0 40.0 13.0 37.4 190.0	M35377.176452 M35377.176314 M35377.176303 M35377.174511 M35377.162728 M35377.162728 M35377.176462 M35377.191382 M35377.172010
Megli, ErvinSW 36-044-20 W4MLower Horseshoe CMeglie, RaySE 34-044-20 W4MLower Horseshoe CMerland Exp LtdSE 25-046-19 W4MLower Horseshoe CMiller, DaveSW 16-041-20 W4MMiddle Horseshoe CMills, CharlieNW 30-046-21 W4MMiddle Horseshoe CMiquelon Lake Prov ParkSW 20-049-20 W4MLower Horseshoe CMiquelon Prov Park #2-8008-33-049-20 W4MLower Horseshoe CMiquelon Prov Park #3-8004-33-049-20 W4MLower Horseshoe CMoore, J.W.06-01-048-21 W4MLower Horseshoe CMoore, NeelSW 04-048-21 W4MLower Horseshoe CMoore, NeelSW 04-048-21 W4MLower Horseshoe CMorris, A.K.SE 34-047-21 W4MLower Horseshoe CMurhead, JohnNE 20-046-19 W4MLower Horseshoe CMurho, Carcy16-35-046-19 W4MLower Horseshoe CNeave, BertNE 08-048-18 W4MLower Horseshoe CNeave, BertNE 34-047-21 W4MLower Horseshoe CNeelson, JohnNE 34-044-19 W4MSurficialNeess, Gladys05-08-049-19 W4MLower Horseshoe CNew Norway, Village Of11-045-21 W4MLower Horseshoe CNordin, TerrenceNW 20-048-20 W4MLower Horseshoe CNordin, TerrenceNW 20-048-20 W4MLower Horseshoe COlson, ElmerSE 15-047-18 W4MLower Horseshoe COlson, ElmerSE 15-047-18 W4MLower Horseshoe COlson, FrankNE 08-043-21 W4MLower Horseshoe COlson, FrankNE 08-043-21 W4M<	anyon 11-Jun-70 anyon 16-Apr-77 anyon 02-Aug-85 anyon 31-Aug-78 anyon 06-Aug-81 anyon 01-Jan-63 anyon 04-Feb-80 07-Feb-80 anyon 11-Nov-69	44.2 48.8 24.4 3 41.2 30.5 33.8 73.2 32.9 24.4	145.0 160.0 80.0 135.0 100.0 111.0 240.0 108.0 80.0	12.8 15.2 7.6 3.7 12.2 4.0 11.4 57.9 3.1	42.0 50.0 25.0 12.0 40.0 13.0 37.4 190.0	M35377.176314 M35377.176303 M35377.174511 M35377.162728 M35377.176462 M35377.191382 M35377.172010
Meglie, RaySE 34-044-20 W4MLower Horseshoe CMerland Exp LtdSE 25-046-19 W4MLower Horseshoe CMiller, DaveSW 16-041-20 W4MMiddle Horseshoe CMills, CharlieNW 30-046-21 W4MMiddle Horseshoe CMiquelon Lake Prov ParkSW 20-049-20 W4MLower Horseshoe CMiquelon Prov Park #2-8008-33-049-20 W4MLower Horseshoe CMiquelon Prov Park #3-8004-33-049-20 W4MLower Horseshoe CMoore, J.W.06-01-048-21 W4MLower Horseshoe CMoore, Juim03-01-048-21 W4MLower Horseshoe CMoore, NoelSW 04-048-21 W4MLower Horseshoe CMoore, NoelSW 04-048-21 W4MLower Horseshoe CMoore, NoelSW 04-048-21 W4MLower Horseshoe CMurhead, JohnNE 20-046-19 W4MLower Horseshoe CMuirhead, JohnNE 20-046-19 W4MLower Horseshoe CNeave, BertNE 08-048-18 W4MLower Horseshoe CNeave, BertNE 08-048-18 W4MLower Horseshoe CNelson, JohnNE 34-044-19 W4MSurficialNess, Gladys05-08-049-19 W4MLower Horseshoe CNew Norway, Village Of12-11-045-21 W4MSurficialNew Norway, Village Of11-045-21 W4MLower Horseshoe CNordin, TerrenceNW 20-048-20 W4MLower Horseshoe CNordin, TerrenceNW 20-048-20 W4MLower Horseshoe COlson, ElmerSW 16-047-20 W4MSurficialOlson, FirankNE 08-043-21 W4MUpper Horseshoe COlson, FirankNE 08-043-21 W4M <t< td=""><td>anyon 16-Apr-77 anyon 02-Aug-85 anyon 31-Aug-78 anyon 06-Aug-81 anyon 01-Jan-63 anyon 04-Feb-80 07-Feb-80 anyon 11-Nov-69</td><td>48.8 24.4 41.2 30.5 33.8 73.2 32.9 24.4</td><td>160.0 80.0 135.0 100.0 111.0 240.0 108.0 80.0</td><td>15.2 7.6 3.7 12.2 4.0 11.4 57.9 3.1</td><td>50.0 25.0 12.0 40.0 13.0 37.4 190.0</td><td>M35377.176303 M35377.174511 M35377.162728 M35377.162728 M35377.191382 M35377.172010</td></t<>	anyon 16-Apr-77 anyon 02-Aug-85 anyon 31-Aug-78 anyon 06-Aug-81 anyon 01-Jan-63 anyon 04-Feb-80 07-Feb-80 anyon 11-Nov-69	48.8 24.4 41.2 30.5 33.8 73.2 32.9 24.4	160.0 80.0 135.0 100.0 111.0 240.0 108.0 80.0	15.2 7.6 3.7 12.2 4.0 11.4 57.9 3.1	50.0 25.0 12.0 40.0 13.0 37.4 190.0	M35377.176303 M35377.174511 M35377.162728 M35377.162728 M35377.191382 M35377.172010
Merland Exp LtdSE 25-046-19 W4MLower Horseshoe CMiller, DaveSW 16-041-20 W4MMiddle Horseshoe CMills, CharlieNW 30-046-21 W4MMiddle Horseshoe CMiquelon Lake Prov ParkSW 20-049-20 W4MLower Horseshoe CMiquelon Prov Park #2-8008-33-049-20 W4MLower Horseshoe CMiquelon Prov Park #3-8004-33-049-20 W4MLower Horseshoe CMoore, J.W.06-01-048-21 W4MLower Horseshoe CMoore, J.W.06-01-048-21 W4MLower Horseshoe CMoore, Jam03-01-048-21 W4MLower Horseshoe CMoore, NoelSW 04-048-21 W4MLower Horseshoe CMoore, NoelSW 04-048-21 W4MLower Horseshoe CMoore, NoelSW 04-048-21 W4MLower Horseshoe CMorris, A.K.SE 34-047-21 W4MLower Horseshoe CMurhead, JohnNE 20-046-19 W4MLower Horseshoe CMurno, Carcy16-35-046-19 W4MLower Horseshoe CNeave, BertNE 08-048-18 W4MLower Horseshoe CNelson, JohnNE 34-044-19 W4MSurficialNess, Gladys05-08-049-19 W4MLower Horseshoe CNew Norway, Village Of12-11-045-21 W4MSurficialNew Norway, Village Of12-11-045-21 W4MLower Horseshoe CNoden, DouglasSE 03-046-21 W4MLower Horseshoe CNoden, DouglasSE 03-046-21 W4MLower Horseshoe CNordin, TerrenceNW 20-048-20 W4MLower Horseshoe COlson, ElmerSW 16-047-20 W4MSurficialOlson, ElmerSW 16-047-20 W4ML	anyon 02-Aug-85 anyon 31-Aug-78 anyon 06-Aug-81 anyon 01-Jan-63 anyon 04-Feb-80 07-Feb-80 anyon 11-Nov-69	24.4 41.2 30.5 33.8 73.2 32.9 24.4	80.0 135.0 100.0 111.0 240.0 108.0 80.0	7.6 3.7 12.2 4.0 11.4 57.9 3.1	25.0 12.0 40.0 13.0 37.4 190.0	M35377.174511 M35377.162728 M35377.176462 M35377.191382 M35377.172010
Miller, DaveSW 16-041-20 W4M Middle Horseshoe CMills, CharlieNW 30-046-21 W4M Middle Horseshoe CMiquelon Lake Prov ParkSW 20-049-20 W4M Lower Horseshoe CMiquelon Prov Park #2-8008-33-049-20 W4M Lower Horseshoe CMiquelon Prov Park #3-8004-33-049-20 W4M Lower Horseshoe CMoore, J.W.06-01-048-21 W4M Lower Horseshoe CMoore, Jim03-01-048-21 W4M Lower Horseshoe CMoore, NoelSW 04-048-21 W4M Lower Horseshoe CMorris, A.K.SE 34-047-21 W4M Lower Horseshoe CMurhead, JohnNE 20-046-19 W4M Lower Horseshoe CMurno, Carcy16-35-046-19 W4M Lower Horseshoe CNeave, BertNE 08-048-18 W4M Lower Horseshoe CNeave, BertNE 08-048-18 W4M Lower Horseshoe CNeave, BertNE 08-048-18 W4M Lower Horseshoe CNeason, JohnNE 34-044-19 W4M SurficialNess, Gladys05-08-049-19 W4M Lower Horseshoe CNew Norway, Village Of1-211-045-21 W4M SurficialNew Norway, Village Of11-045-21 W4M Lower Horseshoe CNordin, TerrenceNW 20-048-20 W4M Lower Horseshoe CNordin, TerrenceNW 20-048-20 W4M Lower Horseshoe COlson, ElmerSW 16-047-20 W4M SurficialOlson, ElmerSE 15-047-18 W4M Lower Horseshoe COlson, FrankNE 08-043-21 W4M Lower Horseshoe COlson, FrankNE 08-043-21 W4M Lower Horseshoe COlson, FirenceNW 20-044-21 W4M Lower Horseshoe COlson, FirenceNW 20-044-21 W4M Lower Horseshoe COlson, FirenceNW 20-044-21 W4M Lower Horseshoe COlson, Firence <td>anyon 31-Aug-78 anyon 06-Aug-81 anyon 01-Jan-63 anyon 04-Feb-80 07-Feb-80 anyon 11-Nov-69</td> <td>3 41.2 30.5 33.8 73.2 32.9 24.4</td> <td>135.0 100.0 111.0 240.0 108.0 80.0</td> <td>3.7 12.2 4.0 11.4 57.9 3.1</td> <td>12.0 40.0 13.0 37.4 190.0</td> <td>M35377.162728 M35377.176462 M35377.191382 M35377.172010</td>	anyon 31-Aug-78 anyon 06-Aug-81 anyon 01-Jan-63 anyon 04-Feb-80 07-Feb-80 anyon 11-Nov-69	3 41.2 30.5 33.8 73.2 32.9 24.4	135.0 100.0 111.0 240.0 108.0 80.0	3.7 12.2 4.0 11.4 57.9 3.1	12.0 40.0 13.0 37.4 190.0	M35377.162728 M35377.176462 M35377.191382 M35377.172010
Mills, CharlieNW 30-046-21 W4MMiddle Horseshoe CMiquelon Lake Prov ParkSW 20-049-20 W4MLower Horseshoe CMiquelon Prov Park #2-8008-33-049-20 W4MLower Horseshoe CMiquelon Prov Park #3-8004-33-049-20 W4MLower Horseshoe CMoore, J.W.06-01-048-21 W4MLower Horseshoe CMoore, Jim03-01-048-21 W4MLower Horseshoe CMoore, NoelSW 04-048-21 W4MLower Horseshoe CMorris, A.K.SE 34-047-21 W4MLower Horseshoe CMuirhead, JohnNE 20-046-19 W4MLower Horseshoe CMurno, Carcy16-35-046-19 W4MLower Horseshoe CNeave, BertNE 08-048-18 W4MLower Horseshoe CNederlof, RonSE 04-047-21 W4MLower Horseshoe CNederlof, RonSE 04-047-21 W4MLower Horseshoe CNews, Gladys05-08-049-19 W4MLower Horseshoe CNew Norway, Village Of12-11-045-21 W4MSurficialNew Norway, Village Of11-045-21 W4MMiddle Horseshoe CNewstead, NormanNW 14-045-22 W4MLower Horseshoe CNordin, TerrenceNW 20-048-20 W4MLower Horseshoe CNordin, TerrenceNW 20-048-20 W4MLower Horseshoe COlson, ElmerSE 15-047-18 W4MSurficialOlson, ElmerSE 15-047-18 W4MLower Horseshoe COlson, FrankNE 08-043-21 W4MLower Horseshoe COlson, FrankNE 08-043-21 W4MLower Horseshoe COrr, C.16-07-044-17 W4MLower Horseshoe COlson, FirankNE 08-043-21 W4M	anyon 06-Aug-81 anyon 01-Jan-63 anyon 04-Feb-80 07-Feb-80 anyon 11-Nov-69	30.5 33.8 73.2 32.9 24.4	100.0 111.0 240.0 108.0 80.0	12.2 4.0 11.4 57.9 3.1	40.0 13.0 37.4 190.0	M35377.176462 M35377.191382 M35377.172010
Miquelon Lake Prov ParkSW 20-049-20 W4MLower Horseshoe CMiquelon Prov Park #2-8008-33-049-20 W4MLower Horseshoe CMiquelon Prov Park #3-8004-33-049-20 W4MLower Horseshoe CMoore, J.W.06-01-048-21 W4MLower Horseshoe CMoore, Jim03-01-048-21 W4MLower Horseshoe CMoore, NoelSW 04-048-21 W4MLower Horseshoe CMorris, A.K.SE 34-047-21 W4MLower Horseshoe CMuirhead, JohnNE 20-046-19 W4MLower Horseshoe CMunro, Carcy16-35-046-19 W4MLower Horseshoe CNeave, BertNE 08-048-18 W4MLower Horseshoe CNederlof, RonSE 04-047-21 W4MLower Horseshoe CNeederlof, RonSE 04-047-21 W4MLower Horseshoe CNew Norway, Village Of12-11-045-21 W4MLower Horseshoe CNew Norway, Village Of11-045-21 W4MLower Horseshoe CNewstead, NormanNW 14-045-22 W4MLower Horseshoe CNewstead, NormanNW 14-045-22 W4MLower Horseshoe CNordin, TerrenceNW 20-048-20 W4MLower Horseshoe COlsen, Lloyd09-28-047-17 W4MBearpawOlsen, Lloyd09-28-047-17 W4MSurficialOlson, ElmerSE 15-047-18 W4MLower Horseshoe COlson, FirankNE 08-043-21 W4MLower Horseshoe COlson, FrankNE 08-043-21 W4MLower Horseshoe COlson, FirankNE 08-043-21 W4MLower Horseshoe COlson, FirankNE 20-048-20 W4MLower Horseshoe COlson, FirankNE 08-043-21	anyon 01-Jan-63 anyon 04-Feb-80 07-Feb-80 anyon 11-Nov-69	33.8 73.2 32.9 24.4	111.0 240.0 108.0 80.0	4.0 11.4 57.9 3.1	13.0 <mark>37.4</mark> 190.0	M35377.191382 M35377.172010
Miquelon Prov Park #2-8008-33-049-20 W4MLower Horseshoe CMiquelon Prov Park #3-8004-33-049-20 W4MLower Horseshoe CMoore, J.W.06-01-048-21 W4MLower Horseshoe CMoore, Jim03-01-048-21 W4MLower Horseshoe CMoore, NoelSW 04-048-21 W4MLower Horseshoe CMorris, A.K.SE 34-047-21 W4MLower Horseshoe CMurhead, JohnNE 20-046-19 W4MLower Horseshoe CMurno, Carcy16-35-046-19 W4MLower Horseshoe CNeave, BertNE 08-048-18 W4MLower Horseshoe CNederlof, RonSE 04-047-21 W4MLower Horseshoe CNelson, JohnNE 34-044-19 W4MSurficialNews, Gladys05-08-049-19 W4MLower Horseshoe CNew Norway, Village Of11-045-21 W4MSurficialNew Norway, Village Of11-045-21 W4MKower SurficialNoden, DouglasSE 03-046-21 W4MLower Horseshoe CNordin, TerrenceNW 20-048-20 W4MLower Horseshoe CNordin, TerrenceNW 20-048-20 W4MLower Horseshoe COlsen, Lloyd09-28-047-17 W4MBearpawOlsen, ElmerSE 15-047-18 W4MLower Horseshoe COlson, FirankNE 08-043-21 W4MLower Horseshoe COlson, FrankNE 08-043-21 W4MLower Horseshoe COlson, FiranceNW 15-047-20 W4MLower Horseshoe COlson, FirankNE 08-043-21 W4MLower Horseshoe COlson, FirankNE 08-043-21 W4MLower Horseshoe COlson, FirankNE 08-043-21 W4MLower Horsesh	anyon 04-Feb-80 07-Feb-80 anyon 11-Nov-69	73.2 32.9 24.4	240.0 108.0 80.0	11.4 57.9 3.1	<mark>37.4</mark> 190.0	M35377.172010
Miquelon Prov Park #3-8004-33-049-20 W4MLower SurficialMoore, J.W.06-01-048-21 W4MLower Horseshoe C.Moore, Jim03-01-048-21 W4MLower Horseshoe C.Moore, NoelSW 04-048-21 W4MLower Horseshoe C.Morris, A.K.SE 34-047-21 W4MLower Horseshoe C.Murihead, JohnNE 20-046-19 W4MLower Horseshoe C.Murinead, JohnNE 20-046-19 W4MLower Horseshoe C.Neave, BertNE 08-048-18 W4MLower Horseshoe C.Nederlof, RonSE 04-047-21 W4MLower Horseshoe C.Nelson, JohnNE 34-044-19 W4MSurficialNess, Gladys05-08-049-19 W4MLower Horseshoe C.New Norway, Village Of12-11-045-21 W4MSurficialNew Norway, Village Of	07-Feb-80 anyon 11-Nov-69) 32.9) 24.4	108.0 80.0	57.9 <mark>3.1</mark>	190.0	
Moore, J.W.06-01-048-21 W4MLower Horseshoe CMoore, Jim03-01-048-21 W4MLower Horseshoe CMoore, NoelSW 04-048-21 W4MLower Horseshoe CMorris, A.K.SE 34-047-21 W4MLower Horseshoe CMuirhead, JohnNE 20-046-19 W4MLower Horseshoe CMuirhead, JohnNE 20-046-19 W4MLower Horseshoe CMurro, Carcy16-35-046-19 W4MLower Horseshoe CNeave, BertNE 08-048-18 W4MLower Horseshoe CNederlof, RonSE 04-047-21 W4MLower Horseshoe CNelson, JohnNE 34-044-19 W4MLower Horseshoe CNews, Gladys05-08-049-19 W4MLower Horseshoe CNew Norway, Village Of12-11-045-21 W4MSurficialNew Norway, Village Of11-045-21 W4MLower Horseshoe CNewstead, NormanNW 14-045-22 W4MLower Horseshoe CNordin, TerrenceNW 20-048-20 W4MLower Horseshoe COlsen, Lloyd09-28-047-17 W4MBearpawOlsen, Lloyd09-28-047-17 W4MBearpawOlson, ElmerSW 16-047-20 W4MSurficialOlson, FrankNE 08-043-21 W4MUpper Horseshoe COrr, C.16-07-044-17 W4MLower Horseshoe COrr, C.16-07-044-17 W4MLo	anyon 11-Nov-69	9 24.4	80.0	3.1		M35377.172004
Moore, Jim03-01-048-21 W4MLower Horseshoe CMoore, NoelSW 04-048-21 W4MLower Horseshoe CMorris, A.K.SE 34-047-21 W4MLower Horseshoe CMuirhead, JohnNE 20-046-19 W4MLower Horseshoe CMunro, Carcy16-35-046-19 W4MLower Horseshoe CNeave, BertNE 08-048-18 W4MLower Horseshoe CNederlof, RonSE 04-047-21 W4MLower Horseshoe CNelson, JohnNE 34-044-19 W4MLower Horseshoe CNess, Gladys05-08-049-19 W4MLower Horseshoe CNew Norway, Village Of12-11-045-21 W4MSurficialNew Norway, Village Of11-045-21 W4MSurficialNew Norway, Village Of11-045-21 W4MLower Horseshoe CNewstead, NormanNW 14-045-22 W4MLower Horseshoe CNordin, TerrenceNW 20-048-20 W4MLower Horseshoe COlsen, Lloyd09-28-047-17 W4MBearpawOlsen, LlyleNW 20-044-21 W4MSurficialOlson, ElmerSE 15-047-18 W4MLower Horseshoe COlson, FrankNE 08-043-21 W4MUpper Horseshoe COrr, C.16-07-044-17 W4MLower Horseshoe COrr, C.16-07-044-17 W4MLower Horseshoe COrr, S.02-29-048-19 W4MLower Horseshoe COzment, KenNW 15-047-20 W4MLower Horseshoe CPattison, W.S.02-29-048-19 W4MLower Horseshoe C						
Moore, NoelSW 04-048-21 W4MLower Horseshoe CMorris, A.K.SE 34-047-21 W4MLower Horseshoe CMuirhead, JohnNE 20-046-19 W4MLower Horseshoe CMunro, Carcy16-35-046-19 W4MLower Horseshoe CNeave, BertNE 08-048-18 W4MLower Horseshoe CNederlof, RonSE 04-047-21 W4MLower Horseshoe CNelson, JohnNE 34-044-19 W4MLower Horseshoe CNew Norway, Village Of12-11-045-21 W4MLower Horseshoe CNew Norway, Village Of11-045-21 W4MSurficialNew Norway, Village Of11-045-21 W4MLower Horseshoe CNewstead, NormanNW 14-045-22 W4MLower Horseshoe CNordin, TerrenceNW 20-048-20 W4MLower Horseshoe COlsen, Lloyd09-28-047-17 W4MBearpawOlsen, Lloyd09-28-047-17 W4MSurficialOlson, ElmerSW 16-047-20 W4MLower Horseshoe COlson, FrankNE 08-043-21 W4MLower Horseshoe COrr, C.16-07-044-17 W4MLower Horseshoe COrr, C.16-07-044-17 W4MLower Horseshoe COrr, C.16-07-044-17 W4MLower Horseshoe COrr, C.16-07-044-17 W4MLower Horseshoe COzment, KenNW 15-047-20 W4MLower Horseshoe CPattison, W.S.02-29-048-19 W4MLower Horseshoe C		6 45.7	150.0	12.5	10.0	M35377.172525
Morris, A.K.SE 34-047-21 W4MLower Horseshoe CMuirhead, JohnNE 20-046-19 W4MLower Horseshoe CMunro, Carcy16-35-046-19 W4MLower Horseshoe CNeave, BertNE 08-048-18 W4MLower Horseshoe CNederlof, RonSE 04-047-21 W4MLower Horseshoe CNelson, JohnNE 34-044-19 W4MLower Horseshoe CNews, Gladys05-08-049-19 W4MLower Horseshoe CNew Norway, Village Of12-11-045-21 W4MLower Horseshoe CNew Norway, Village Of11-045-21 W4MMiddle Horseshoe CNewstead, NormanNW 14-045-22 W4MLower SurficialNoden, DouglasSE 03-046-21 W4MLower Horseshoe CNordin, TerrenceNW 20-048-20 W4MLower Horseshoe COlsen, Lloyd09-28-047-17 W4MBearpawOlsen, Lloyd09-28-047-17 W4MBearpawOlson, ElmerSW 16-047-20 W4MSurficialOlson, FrankNE 08-043-21 W4MLower Horseshoe COlson, FrankNE 08-043-21 W4MLower Horseshoe COrr, C.16-07-044-17 W4MLower Horseshoe COrr, C.16-07-044-17 W4MLower Horseshoe COrr, C.16-07-044-17 W4MLower Horseshoe COzment, KenNW 15-047-20 W4MLower Horseshoe CPattison, W.S.02-29-048-19 W4MLower Horseshoe C					41.0	M35377.172520
Muirhead, JohnNE 20-046-19 W4MLower Horseshoe CMunro, Carcy16-35-046-19 W4MLower Horseshoe CNeave, BertNE 08-048-18 W4MLower Horseshoe CNederlof, RonSE 04-047-21 W4MLower Horseshoe CNess, Gladys05-08-049-19 W4MLower Horseshoe CNews, Siladys05-08-049-19 W4MLower Horseshoe CNew Norway, Village Of12-11-045-21 W4MSurficialNew Norway, Village Of11-045-21 W4MMiddle Horseshoe CNewstead, NormanNW 14-045-22 W4MLower SurficialNoden, DouglasSE 03-046-21 W4MLower Horseshoe CNordin, TerrenceNW 20-048-20 W4MLower Horseshoe COlsen, Lloyd09-28-047-17 W4MBearpawOlsen, Lloyd09-28-047-17 W4MSurficialOlson, ElmerSE 15-047-18 W4MLower Horseshoe COlson, FrankNE 88-043-21 W4MUpper Horseshoe COlson, FrankNE 08-043-21 W4MLower Horseshoe COlson, FrankNE 08-043-21 W4MLower Horseshoe COrr, C.16-07-044-17 W4MLower Horseshoe COzment, KenNW 15-047-20 W4MLower Horseshoe CPattison, W.S.02-29-048-19 W4MLower Horseshoe C			160.0	6.7	22.0	M35377.172566
Munro, Carcy16-35-046-19 W4MLower Horseshoe ComparisonNeave, BertNE 08-048-18 W4MLower Horseshoe ComparisonNederlof, RonSE 04-047-21 W4MLower Horseshoe ComparisonNelson, JohnNE 34-044-19 W4MSurficialNess, Gladys05-08-049-19 W4MLower Horseshoe ComparisonNew Norway, Village Of12-11-045-21 W4MSurficialNew Norway, Village Of11-045-21 W4MMiddle Horseshoe ComparisonNewstead, NormanNW 14-045-22 W4MLower Horseshoe ComparisonNoden, DouglasSE 03-046-21 W4MLower Horseshoe ComparisonNordin, TerrenceNW 20-048-20 W4MLower Horseshoe ComparisonOlsen, Lloyd09-28-047-17 W4MBearpawOlsen, Lloyd09-28-047-17 W4MSurficialOlson, ElmerSW 16-047-20 W4MSurficialOlson, FrankNE 88-043-21 W4MLower Horseshoe ComparisonOlson, FrankNE 08-043-21 W4MLower Horseshoe ComparisonOrr, C.16-07-044-17 W4MLower Horseshoe ComparisonOzrment, KenNW 15-047-20 W4MLower Horseshoe ComparisonPattison, W.S.02-29-048-19 W4MLower Horseshoe Comparison			93.0	7.0	23.0	M35377.175308
Neave, BertNE 08-048-18 W4MLower Horseshoe CNederlof, RonSE 04-047-21 W4MLower Horseshoe CNelson, JohnNE 34-044-19 W4MSurficialNess, Gladys05-08-049-19 W4MLower Horseshoe CNew Norway, Village Of12-11-045-21 W4MSurficialNew Norway, Village Of11-045-21 W4MMiddle Horseshoe CNewstead, NormanNW 14-045-22 W4MLower SurficialNoden, DouglasSE 03-046-21 W4MLower Horseshoe CNordin, TerrenceNW 20-048-20 W4MLower Horseshoe COlsen, Lloyd09-28-047-17 W4MBearpawOlsen, LyleNW 20-044-21 W4MSurficialOlson, ElmerSE 15-047-18 W4MLower Horseshoe COlson, FrankNE 08-043-21 W4MLower Horseshoe COlson, FrankNE 08-043-21 W4MLower Horseshoe COrr, C.16-07-044-17 W4MLower Horseshoe COzment, KenNW 15-047-20 W4MLower Horseshoe CPattison, W.S.02-29-048-19 W4MLower Horseshoe C			69.0	11.9	39.0	M35377.174495
Nederlof, RonSE 04-047-21 W4MLower Horseshoe GNelson, JohnNE 34-044-19 W4MSurficialNess, Gladys05-08-049-19 W4MLower Horseshoe GNew Norway, Village Of12-11-045-21 W4MSurficialNew Norway, Village Of11-045-21 W4MMiddle Horseshoe GNewstead, NormanNW 14-045-22 W4MLower SurficialNordin, TerrenceNW 20-048-20 W4MLower Horseshoe GOlsen, Lloyd09-28-047-17 W4MBearpawOlsen, LyleNW 20-044-21 W4MSurficialOlson, ElmerSE 15-047-18 W4MLower Horseshoe GOlson, FrankNE 08-043-21 W4MUser Horseshoe GOrr, C.16-07-044-17 W4MLower Horseshoe GOzment, KenNW 15-047-20 W4MLower Horseshoe GPattison, W.S.02-29-048-19 W4MLower Horseshoe G			110.0	12.2	40.0	M35377.174562
Nelson, JohnNE 34-044-19 W4MSurficialNess, Gladys05-08-049-19 W4MLower Horseshoe CNew Norway, Village Of12-11-045-21 W4MSurficialNew Norway, Village Of11-045-21 W4MMiddle Horseshoe CNewstead, NormanNW 14-045-22 W4MLower SurficialNorden, DouglasSE 03-046-21 W4MLower Horseshoe CNordin, TerrenceNW 20-048-20 W4MLower Horseshoe COlsen, Lloyd09-28-047-17 W4MBearpawOlsen, LyleNW 20-044-21 W4MSurficialOlson, ElmerSE 15-047-20 W4MLower Horseshoe CCOlson, FrankNE 08-043-21 W4MUoper Horseshoe CCOlson, KenNW 15-047-20 W4MLower Horseshoe CCOrr, C.16-07-044-17 W4MLower Horseshoe CCOzment, KenNW 15-047-20 W4MLower Horseshoe CCPattison, W.S.02-29-048-19 W4MLower Horseshoe CC			85.0	6.1	20.0	M35377.171519
Ness, Gladys05-08-049-19 W4MLower Horseshoe GNew Norway, Village Of12-11-045-21 W4MSurficialNew Norway, Village Of11-045-21 W4MMiddle Horseshoe CNewstead, NormanNW 14-045-22 W4MLower SurficialNoden, DouglasSE 03-046-21 W4MLower Horseshoe CNordin, TerrenceNW 20-048-20 W4MLower Horseshoe COlsen, Lloyd09-28-047-17 W4MBearpawOlsen, LyleNW 20-044-21 W4MSurficialOlson, ElmerSW 16-047-20 W4MLower Horseshoe CCOlson, FrankNE 08-043-21 W4MUpper Horseshoe CCOlson, FrankNE 08-043-21 W4MLower Horseshoe CCOrr, C.16-07-044-17 W4MLower Horseshoe CCOzment, KenNW 15-047-20 W4MLower Horseshoe CCPattison, W.S.02-29-048-19 W4MLower Horseshoe CC			135.0	9.1	30.0	M35377.174957
New Norway, Village Of12-11-045-21 W4MSurficialNew Norway, Village Of11-045-21 W4MMiddle Horseshoe CNewstead, NormanNW 14-045-22 W4MLower SurficialNoden, DouglasSE 03-046-21 W4MLower Horseshoe CNordin, TerrenceNW 20-048-20 W4MLower Horseshoe COlsen, Lloyd09-28-047-17 W4MBearpawOlsen, LyleNW 20-044-21 W4MSurficialOlson, ElmerSW 16-047-20 W4MLower Horseshoe COlson, FrankNE 08-043-21 W4MUpper Horseshoe COrr, C.16-07-044-17 W4MLower Horseshoe COzment, KenNW 15-047-20 W4MLower Horseshoe CPattison, W.S.02-29-048-19 W4MLower Horseshoe C	17-Aug-63		70.0	13.7	45.0	M35377.176169
New Norway, Village Of11-045-21 W4MMiddle Horseshoe CNewstead, NormanNW 14-045-22 W4MLower SurficialNoden, DouglasSE 03-046-21 W4MLower Horseshoe CNordin, TerrenceNW 20-048-20 W4MLower Horseshoe COlsen, Lloyd09-28-047-17 W4MBearpawOlsen, LyleNW 20-044-21 W4MSurficialOlson, ElmerSW 16-047-20 W4MLower Horseshoe COlson, FrankNE 08-043-21 W4MLower Horseshoe COrr, C.16-07-044-17 W4MLower Horseshoe COzment, KenNW 15-047-20 W4MLower Horseshoe CPattison, W.S.02-29-048-19 W4MLower Horseshoe C			148.0	3.7	12.0	M35377.172884
Newstead, NormanNW 14-045-22 W4MLower SurficialNoden, DouglasSE 03-046-21 W4MLower Horseshoe CNordin, TerrenceNW 20-048-20 W4MLower Horseshoe COlsen, Lloyd09-28-047-17 W4MBearpawOlsen, LyleNW 20-044-21 W4MSurficialOlson, ElmerSW 16-047-20 W4MLower Horseshoe COlson, FrankNE 08-043-21 W4MUpper Horseshoe COlson, FrankNE 08-043-21 W4MUpper Horseshoe COrr, C.16-07-044-17 W4MLower Horseshoe COzment, KenNW 15-047-20 W4MLower Horseshoe CPattison, W.S.02-29-048-19 W4MLower Horseshoe C	23-Aug-78		90.0	1.5	5.0	M35377.171081
Noden, DouglasSE 03-046-21 W4MLower Horseshoe CaNordin, TerrenceNW 20-048-20 W4MLower Horseshoe CaOlsen, Lloyd09-28-047-17 W4MBearpawOlsen, LyleNW 20-044-21 W4MSurficialOlson, ElmerSW 16-047-20 W4MSurficialOlson, FrankNE 08-043-21 W4MUpper Horseshoe CaOlson, FrankNE 08-043-21 W4MUpper Horseshoe CaOrr, C.16-07-044-17 W4MLower Horseshoe CaOzment, KenNW 15-047-20 W4MLower Horseshoe CaPattison, W.S.02-29-048-19 W4MLower Horseshoe Ca			110.0	5.8	19.0 28.5	M35377.171097
Nordin, TerrenceNW 20-048-20 W4MLower Horseshoe COlsen, Lloyd09-28-047-17 W4MBearpawOlsen, LyleNW 20-044-21 W4MSurficialOlson, ElmerSW 16-047-20 W4MSurficialOlson, FrankNE 08-043-21 W4MLower Horseshoe COlson, FrankNE 08-043-21 W4MUpper Horseshoe COrr, C.16-07-044-17 W4MLower Horseshoe COzment, KenNW 15-047-20 W4MLower Horseshoe CPattison, W.S.02-29-048-19 W4MLower Horseshoe C			82.0 180.0	8.7 24.7	81.0	M35377.171187 M35377.176325
Olsen, Lloyd09-28-047-17 W4MBearpawOlsen, LyleNW 20-044-21 W4MSurficialOlson, ElmerSW 16-047-20 W4MSurficialOlson, ElmerSE 15-047-18 W4MLower Horseshoe CaOlson, FrankNE 08-043-21 W4MUpper Horseshoe CaOrr, C.16-07-044-17 W4MLower Horseshoe CaOzment, KenNW 15-047-20 W4MLower Horseshoe CaPattison, W.S.02-29-048-19 W4MLower Horseshoe Ca			130.0	10.7	35.0	
Olsen, LyleNW 20-044-21 W4MSurficialOlson, ElmerSW 16-047-20 W4MSurficialOlson, ElmerSE 15-047-18 W4MLower Horseshoe COlson, FrankNE 08-043-21 W4MUpper Horseshoe COrr, C.16-07-044-17 W4MLower Horseshoe COzment, KenNW 15-047-20 W4MLower Horseshoe CPattison, W.S.02-29-048-19 W4MLower Horseshoe C			58.0	2.7	9.0	M35377.175409
Olson, ElmerSW 16-047-20 W4MSurficialOlson, ElmerSE 15-047-18 W4MLower Horseshoe COlson, FrankNE 08-043-21 W4MUpper Horseshoe COrr, C.16-07-044-17 W4MLower Horseshoe COzment, KenNW 15-047-20 W4MLower Horseshoe CPattison, W.S.02-29-048-19 W4MLower Horseshoe C	26-Oct-82 01-May-70		110.0	22.6	74.0	M35377.171747 M35377.174207
Olson, ElmerSE 15-047-18 W4MLower Horseshoe COlson, FrankNE 08-043-21 W4MUpper Horseshoe COrr, C.16-07-044-17 W4MLower Horseshoe COzment, KenNW 15-047-20 W4MLower Horseshoe CPattison, W.S.02-29-048-19 W4MLower Horseshoe C	06-Nov-81		64.0	22.0	8.5	M35377.174207 M35377.174970
Olson, Frank NE 08-043-21 W4M Upper Horseshoe ca Orr, C. 16-07-044-17 W4M Lower Horseshoe Ca Ozment, Ken NW 15-047-20 W4M Lower Horseshoe Ca Pattison, W.S. 02-29-048-19 W4M Lower Horseshoe Ca			90.0	6.1	20.0	M35377.171800
Orr, C. 16-07-044-17 W4M Lower Horseshoe C Ozment, Ken NW 15-047-20 W4M Lower Horseshoe C Pattison, W.S. 02-29-048-19 W4M Lower Horseshoe C			110.0	4.3	14.0	M35377.163657
Ozment, Ken NW 15-047-20 W4M Lower Horseshoe G Pattison, W.S. 02-29-048-19 W4M Lower Horseshoe G			88.0	8.5	28.0	M35377.163493
Pattison, W.S. 02-29-048-19 W4M Lower Horseshoe Ca			108.0	9.1	30.0	M35377.174934
			120.0	13.7	45.0	M35377.176940
	anyon 29-May-86		102.0	6.7	22.0	M35377.076821
Pederson, Henry NW 07-047-16 W4M Bearpaw	anyon 29-May-86 anyon 20-Aug-74		113.0	9.1	30.0	M35377.072002
Penner, Waldon 05-10-045-20 W4M Upper Surficial	anyon 29-May-86 anyon 20-Aug-74 27-Mar-82		78.0	7.6	25.0	M35377.164078
Person Bros NW 06-049-20 W4M Lower Horseshoe C	anyon 29-May-86 anyon 20-Aug-74 27-Mar-82 07-Sep-58		162.0	16.8	55.0	M35377.191314
Peterson, E. 11-12-049-21 W4M Surficial	anyon 29-May-86 anyon 20-Aug-74 27-Mar-82 07-Sep-58 01-Jan-65		150.0	24.4	80.0	M35377.173475
Radke, Garry W. 16-27-042-21 W4M Upper Horseshoe ca	anyon 29-May-86 anyon 20-Aug-74 27-Mar-82 07-Sep-58 01-Jan-65 anyon 27-Jul-84		108.0	13.1	43.0	M35377.167027
Ramstad, Dennis SE 19-046-19 W4M Lower Horseshoe C	anyon 29-May-86 anyon 20-Aug-74 27-Mar-82 07-Sep-58 01-Jan-65 anyon 27-Jul-84 01-Jan-28		255.0	43.3	142.0	M35377.174479
Rawson, Paul NE 30-044-18 W4M Lower Surficial	anyon 29-May-86 anyon 20-Aug-74 27-Mar-82 07-Sep-58 01-Jan-65 anyon 27-Jul-84 01-Jan-28 anyon 06-Nov-80) 32.9	77.0	18.0	59.0	M35377.176024
Rayments SE 13-045-20 W4M Lower Horseshoe Ca	anyon 29-May-86 anyon 20-Aug-74 27-Mar-82 07-Sep-58 01-Jan-65 anyon 27-Jul-84 01-Jan-28 anyon 06-Nov-80 anyon 30-Aug-79) <u>32.9</u>) 77.7		12.2	40.0	M35377.170629
Raymond, Neil SW 18-045-20 W4M Lower Horseshoe G	anyon 29-May-86 anyon 20-Aug-74 27-Mar-82 07-Sep-58 01-Jan-65 anyon 27-Jul-84 01-Jan-28 anyon 06-Nov-80 anyon 30-Aug-79 24-Oct-70	32.9 77.7 23.5		18.0	59.0	M35377.163993
Reich, Don SE 03-046-17 W4M Bearpaw	anyon 29-May-86 anyon 20-Aug-74 27-Mar-82 07-Sep-58 01-Jan-65 27-Jul-84 01-Jan-28 anyon 06-Nov-80 anyon 30-Aug-79 24-Oct-70 anyon 16-Dec-74	32.9 77.7 23.5 28.0	92.0		90.0	M35377.174282
Reimer, Fred SE 28-043-20 W4M Lower Surficial	anyon 29-May-86 anyon 20-Aug-74 27-Mar-82 07-Sep-58 01-Jan-65 anyon 27-Jul-84 01-Jan-85 01-Jan-85 01-Jan-85 04-Nov-80 anyon 06-Nov-80 anyon 30-Aug-79 24-Oct-70 anyon 16-Dec-74 anyon 04-May-83	32.9 77.7 23.5 28.0 33.8	92.0 111.0	//4	00.0	M35377.175891
Reiten, Arthur SE 05-047-20 W4M Lower Horseshoe C	anyon 29-May-86 anyon 20-Aug-74 27-Mar-82 07-Sep-58 01-Jan-65 anyon 27-Jul-84 01-Jan-82 anyon 06-Nov-80 anyon 30-Aug-79 24-Oct-70 anyon 16-Dec-74 anyon 04-May-83 12-May-81	32.9 77.7 23.5 28.0 3.33.8 57.9	92.0	27.4 4.6	15.0	

Owner	Location	Aquifer Name	Date Water Well Drilled	Complete Metres	d Depth Feet	NP Metres	WL Feet	UID
Reuter, Carl	SE 18-047-16 W4M	Bearpaw	30-Aug-58	27.4	90.0	9.1	30.0	M35377.076820
Ring, Darryl	SE 27-047-19 W4M	Lower Horseshoe Canyon		30.5	100.0	15.2	50.0	M35377.174784
Rittenhouse, Bill	SE 28-046-21 W4M	Lower Horseshoe Canyon	07-Oct-77	62.5	205.0	30.5	100.0	M35377.176445
Robertson, Al	NE 20-046-21 W4M	Lower Horseshoe Canyon	28-Jan-70	52.4	172.0	20.7	68.0	M35377.176417
Rosalind, Village Of	06-17-044-17 W4M	Surficial	16-Aug-76	24.7	81.0	5.4	17.7	M35377.163618
Rosland, Arne	SW 34-045-19 W4M	Lower Horseshoe Canyon	17-Nov-65	27.7	91.0	10.4	34.0	M35377.170714
Ruhl, M.	NW 11-047-20 W4M	Lower Horseshoe Canyon	07-Sep-68	45.7	150.0	22.9	75.0	M35377.174880
Rylchuk, Mike	NE 08-043-21 W4M	Upper Horseshoe canyon	30-Jul-84	33.5	110.0	4.3	14.0	M35377.163658
Sandburg, Bruce	06-11-042-21 W4M	Upper Horseshoe canyon	15-Jul-82	25.9	85.0	1.4	4.5	M35377.166989
Scabar, Don	16-11-049-21 W4M	Lower Horseshoe Canyon	28-Feb-78	35.1	115.0	11.6	38.0	M35377.173462
Schneider, Ron	NW 11-046-19 W4M	Lower Horseshoe Canyon	01-Jun-82	36.6	120.0	4.6	15.0	M35377.174597
Schou, A.	12-08-041-20 W4M	Upper Horseshoe canyon	01-Sep-69	27.4	90.0	3.7	12.0	M35377.162640
Schrauwen, Peter	NE 29-041-21 W4M	Upper Horseshoe canyon	05-Nov-75	24.4	80.0	1.5	5.0	M35377.163347
Schultz, Darryl	SE 04-047-21 W4M	Lower Horseshoe Canyon	06-May-80	36.6	120.0	7.6	25.0	M35377.174956
Schultz, Russell	NW 08-042-21 W4M	Upper Horseshoe canyon	13-Oct-71	27.4	90.0	3.1	10.0	M35377.166978
Schwab, I.	SW 20-046-19 W4M	Lower Horseshoe Canyon	20-Nov-71	32.0	105.0	18.3	60.0	M35377.174491
Selin, Carl	SE 03-049-21 W4M	Upper Surficial	17-Sep-82	14.6	48.0	10.7	35.0	M35377.173241
Servold	SW 16-041-20 W4M	Surficial		36.6	120.0	1.5	5.0	M35377.162733
Severson, Ron	15-13-045-20 W4M	Lower Horseshoe Canyon	23-Apr-83	39.6	130.0	13.7	45.0	M35377.170642
Shantz, Melvin	NE 12-047-21 W4M	Lower Horseshoe Canyon	01-Sep-68	24.4	80.0	6.1	20.0	M35377.175125
Shantz, Ron	NW 15-042-21 W4M	Upper Horseshoe canyon	05-May-84	41.2	135.0	19.5	64.0	M35377.167001
Sharkey, Bob	NW 10-046-22 W4M	Middle Horseshoe Canyon	23-Nov-73	47.2	155.0	30.5	100.0	M35377.176553
Shuman Real Estate	05-08-046-20 W4M	Lower Horseshoe Canyon	07-Jun-76	65.5	215.0	39.0	128.0	M35377.171382
Shute, E.	NE 08-043-21 W4M	Upper Horseshoe canyon	28-Aug-78	34.8	114.0	6.1	20.0	M35377.163640
Shute, Kenneth G.	SE 06-048-19 W4M	Lower Horseshoe Canyon	01-Jul-81	45.7	150.0	12.2	40.0	M35377.176860
Siemens, Ben D.	NE 19-044-20 W4M	Middle Horseshoe Canyon	1	56.7	186.0	9.1	30.0	M35377.176246
Simonson, Dave	SW 27-049-19 W4M	Lower Horseshoe Canyon	19-Sep-84	14.6	48.0	6.1	20.0	M35377.173100
Sims, Dale	SE 36-046-22 W4M	Lower Horseshoe Canyon	07-Jun-85	70.1	230.0	25.0	82.0	M35377.176707
Skaret, Rodney	NW 04-048-21 W4M	Middle Horseshoe Canyon	21-Jun-82	24.4	80.0	6.1	20.0	M35377.172570
Skudesness Lutheran Church	SW 33-047-17 W4M	Bearpaw	02-Jul-80	21.3	70.0	4.6	15.0	M35377.171760
Smith, Stan	SW 12-048-21 W4M	Lower Horseshoe Canyon	01-Jun-69	37.8	124.0	3.1	10.0	M35377.172628
Sproule, K. Glen	NE 31-041-21 W4M	Upper Horseshoe canyon	20-Jul-79	65.5	215.0	17.1	56.0	M35377.163390
Sroka, Roy	NE 31-046-17 W4M	Bearpaw	29-Mar-82	29.9	98.0	2.7	9.0	M35377.174363
Stang, Don	NE 14-046-19 W4M	Lower Horseshoe Canyon	14-Jan-84	22.3	73.0	9.5	31.0	M35377.174651
Stauffer, Ed	NW 34-048-20 W4M	Lower Horseshoe Canyon	16-Jul-73	19.8	65.0	4.3	14.0	M35377.175479
Steere, Don	NE 24-047-20 W4M	Lower Horseshoe Canyon	01-Jul-75	54.9	180.0	7.6	25.0	M35377.175019
Strilchuck, Joe	SW 04-048-18 W4M	Lower Horseshoe Canyon	19-Jul-82	26.8	88.0	6.4	21.0	M35377.171493
Swedberg, Allan	NE 31-042-19 W4M	Lower Horseshoe Canyon	12-Mar-82	54.9	180.0	30.8	101.0	M35377.163084
Szott, Peter	NE 09-045-17 W4M	Bearpaw	06-Jul-70	33.2	109.0	15.2	50.0	M35377.174018
Tabler, Joe	01-11-044-18 W4M	Lower Horseshoe Canyon	21-Jun-70	45.7	150.0	21.3	70.0	M35377.175966
Teeple, Homer		Lower Horseshoe Canyon	01-Jan-78	42.7	140.0	12.2	40.0	M35377.176898
Thompson, Harold	15-32-044-19 W4M	Surficial	02-Sep-80	18.9	62.0	7.6	25.0	M35377.176162
Thompson, Jim	NE 23-045-21 W4M	Lower Surficial	15-Aug-79	16.8	55.0	9.1	30.0	M35377.171238
Toews, Harvey	NE 27-044-20 W4M	Lower Horseshoe Canyon	17-Aug-79	48.8	160.0	19.8	65.0	M35377.176272
Toews, Noah	SE 25-044-21 W4M	Middle Horseshoe Canyon	18-Oct-78	38.4	126.0	5.6	18.3	M35377.174229
Tollefson, Carl	NW 25-048-20 W4M	Lower Horseshoe Canyon	19-May-83	67.1	220.0	9.5	31.0	M35377.175439
Tomaszewski, Allen	13-31-047-18 W4M	Lower Horseshoe Canyon	15-Jul-83	37.2	122.0	30.5	100.0	M35377.171844
Trout, P.A.	16-27-041-21 W4M	Upper Horseshoe canyon	30-Nov-76	45.7	150.0	4.6	15.0	M35377.163232
Trush, Robert	NE 11-049-21 W4M	Lower Horseshoe Canyon	18-Jul-83	28.4	93.0	15.9	52.0	M35377.173463
Tylosky, Lynn	SE 11-045-18 W4M	Surficial	28-May-82	19.2	63.0	1.5	5.0	M35377.173924
Vanderberg, Joe	SE 16-048-20 W4M	Lower Horseshoe Canyon	20-Dec-79	36.6	120.0	6.1	20.0	M35377.175380
Vanpetten, Norman	13-22-044-19 W4M	Lower Horseshoe Canyon	27-Sep-80	40.2	132.0	10.7	35.0	M35377.176127
Viske, Garfield	NW 11-043-18 W4M	Lower Horseshoe Canyon	27-Nov-81	57.9	190.0	18.3	60.0	M35377.163450
Warkentin, Peter	SE 30-049-19 W4M	Lower Horseshoe Canyon	15-Feb-83	48.8	160.0	18.3	60.0	M35377.173115
Weder, Ivo	NE 02-047-19 W4M	Lower Horseshoe Canyon	01-Oct-78	39.6	130.0	14.0	46.0	M35377.174682
Welda, Ralph	SE 02-048-21 W4M	Lower Horseshoe Canyon	12-Jul-77	22.9	75.0	5.5	18.0	M35377.172241
Wilcox, Leo		Lower Horseshoe Canyon		39.9	131.0	19.2	63.0	M35377.170976
Wilkie, Elmer	SW 11-043-21 W4M	Upper Horseshoe canyon	01-Sep-73	22.9	75.0	5.8	19.0	M35377.163664
Wilson, Ken	04-26-048-21 W4M	Lower Horseshoe Canyon	13-Jul-81	42.7	140.0	4.6	15.0	M35377.172780
Wolski, Eugene	SW 18-045-19 W4M	Lower Horseshoe Canyon	27-Aug-76	67.1	220.0	15.2	50.0	M35377.163945
Young, Leon	SW 07-042-20 W4M	Upper Horseshoe canyon	14-Dec-85	35.1	115.0	14.6	48.0	M35377.163145
Young, Melvin	04-06-044-19 W4M	Middle Horseshoe Canyon	27-Mar-84	29.0	95.0	8.5	28.0	M35377.176064
Yurkoski, E.	15-21-048-18 W4M	Lower Horseshoe Canyon	27-Jun-79	33.8	111.0	14.0	46.0	M35377.171635
Zeniuk, John	NW 12-048-19 W4M	Lower Horseshoe Canyon	01-Sep-72	36.0	118.0	20.9	68.5	M35377.176874
Zubkowski, Ed	01-22-044-21 W4M	Middle Horseshoe Canyon	21-May-81	27.4	90.0	6.1	20.0	M35377.174212

	C	COUNTY OF CAMROSE-OPERATED WATER WELL								
		Aquifer	Date Water	Complete	ed Depth	NP	WL			
Owner County of Camrose	Location SW 18-045-19 W4M L	Name Lower Horseshoe Canyon	Well Drilled 02-Jul-70	Metres 25.91	Feet 85.0	Metres 4.57	Feet 15.0	UID M35377.07		
		·								
	conculting							hudramet		
HCL groundwater environment	al sciences							ydrogeolo		